Abstract
Voronoi diagrams are widely used to represent geographical distributions of information, but they are not readily stacked in a hierarchical fashion. We propose a simple mechanism whereby each index Voronoi cell contains the generators of several Voronoi cells in the next lower level. This allows various processes of indexing, paging, visualization and generalization to be performed on various types of data. While one-level Voronoi indexes have been used before, and hierarchies of the dual Delaunay triangulation have been used for fast point location, we believe that this is the first time that the advantages of their integration have been demonstrated.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amenta, N., Choi, S., Rote, G.: Incremental constructions con BRIO. In: 19th ACM Symposium on Computational Geometry, San Diego (2003)
Aurenhammer, F.: Voronoï diagrams - a survey of a fundamental geometric data structure. ACM Computing Surveys 23, 345–405 (1991)
Boots, B., Shiode, N.: Recursive Voronoi diagrams. Environment and Planning B 30(1), 113–124 (2003)
Christaller, W.: Central Places in Southern Germany (translation). Prentice Hall, NJ (1966)
Dakowicz, M., Gold, C.M.: Extracting Meaningful Slopes from Terrain Contours. International Journal of Computational Geometry Applications 13, 339–357 (2003)
Dakowicz, M., Gold, C.M.: Structuring Kinetic Maps. In: Proceedings of the Twelfth International Symposium on Spatial Data Handling, Vienna (in press, July 2006)
De Floriani, L.: A pyramidal data structure for triangle-based surface description. Computer Graphics and Applications 9(2), 67–78 (1989)
Devillers, O.: On deletion in Delaunay triangulation. In: Proc. 15th ACM Symp. Comp. Geom., pp. 181–188 (1999)
Devillers, O.: The Delaunay Hierarchy. Int. J. Foundations of Computer Science 13(2), 163–180 (2002)
Dobashi, Y., Haga, T., Johan, H., Nishita, T.: A Method for Creating Mosaic Images Using Voronoi Diagrams. In: Proc. EUROGRAPHICS 2002, pp. 341–348 (2002)
Gold, C.M.: An Algorithmic Approach to Marine GIS, ch.4. In: Wright, D., Bartlett, D. (eds.) Marine and Coastal Geographical Information Systems, pp. 37–52. Taylor and Francis, London (2000)
Gold, C.M., Charters, T.D., Ramsden, J.: Automated contour mapping using triangular element data structures and an interpolant over each triangular domain. In: George, J. (ed.) Proceedings of Sigraph 1977. Computer Graphics, San Francisco, USA, vol. 11, pp. 170–175 (1977)
Gold, C.M., Dakowicz, M.: The Crust and Skeleton – Applications in GIS. In: Proceedings, 2nd International Symposium on Voronoi Diagrams in Science and Engineering, Seoul, Korea, pp. 33–42 (2005)
Gold, C.M., Maydell, U.M.: Triangulation and spatial ordering in computer cartography. In: Proceedings, Canadian Cartographic Association third annual meeting, Vancouver, BC, Canada, pp. 69–81 (1978)
Gold, C.M., Nantel, J., Yang, W.: Outside-in: an alternative approach to forest map digitizing. International Journal of Geographical Information Systems 10, 291–310 (1996)
Guibas, L., Mitchell, J.S.B., Roos, T.: Voronoï diagrams of moving points in the plane. In: Schmidt, G., Berghammer, R. (eds.) WG 1991. LNCS, vol. 570, pp. 113–125. Springer, Heidelberg (1992)
Guibas, L., Stolfi, J.: Primitives for the manipulation of general subdivisions and the computation of Voronoï diagrams. Transactions on Graphics 4, 74–123 (1985)
Haggett, P.: Geography – A Modern Synthesis, 3rd edn., p. 627. Harper and Row, NY (1979)
Luebke, D., Reddy, M., Cohen, J., Varshney, A., Watson, B., Huebner, R.: Level of Detail for 3D Graphics, p. 390. Morgan Kaufmann, San Francisco (2003)
Lukatela, H.: A Seamless Global Terrain Model in the Hipparchus System. In: International Conference on Discrete Global Grids, Santa Barbara (2000), http://www.geodyssey.com/
Mucke, E.P., Saias, I., Zhu, B.: Fast randomized point location without preprocessing in two and three dimensional Delaunay triangulations. In: Proc. 12th ACM Symp. Comp. Geom., pp. 274–283 (1996)
Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations - Concepts and Applications of Voronoi Diagrams, 2nd edn., p. 671. John Wiley and Sons, Chichester (2000)
Okabe, A., Sadahiro, Y.: An illusion of spatial hierarchy: spatial hierarchy in a random configuration. Environment and Planning A 28, 1533–1552 (1996)
Pulo, K.J.: Recursive space decomposition in force-directed graph drawing algorithms. In: Proceedings, Australian Symposium on Information Visualization, Sydney, vol. 9, pp. 95–102 (December 2001)
Schussman, S., Bertram, M., Hamann, B., Joy, K.I.: Hierarchical data representations based on planar Voronoi diagrams. In: van Liere, R., Hermann, I., Ribarsky, W. (eds.) Proceedings of VisSym 2000 – The Joint Eurographics and IEEE TVCG Conference on Visualization, Amsterdam, The Netherlands (May 2000)
Sibson, R.: A brief description of natural neighbour interpolation. In: Barnett, V. (ed.) Interpreting Multivariate Data, pp. 21–36. John Wiley and Sons, New York (1981)
Swets, D.L., Weng, J.: Hierarchical discriminant analysis for image retrieval. IEEE Trans. PAMI 21(5), 386–401 (1999)
Tse, R., Gold, C.M., Kidner, D.: A New Approach to Urban Modelling Based on LIDAR. In: Proceedings, WSCG 2006, Plzen, Czech Republic (2006), http://wscg.zcu.cz/WSCG2006/contents.htm
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gold, C., Angel, P. (2006). Voronoi Hierarchies. In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds) Geographic Information Science. GIScience 2006. Lecture Notes in Computer Science, vol 4197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11863939_7
Download citation
DOI: https://doi.org/10.1007/11863939_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44526-5
Online ISBN: 978-3-540-44528-9
eBook Packages: Computer ScienceComputer Science (R0)