Skip to main content

Common Intervals and Symmetric Difference in a Model-Free Phylogenomics, with an Application to Streptophyte Evolution

  • Conference paper
Comparative Genomics (RCG 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4205))

Included in the following conference series:

Abstract

The common intervals of two permutations on n elements are the subsets of terms contiguous in both permutations. They constitute the most basic representation of conserved local order. We use d, the size of the symmetric difference (the complement of the common intervals) of the two subsets of 2{ 1, ⋯ ,n} thus determined by two permutations, as an evolutionary distance between the gene orders represented by the permutations. We consider the Steiner Tree problem in the space (2{ 1, ⋯ ,n},d) as the basis for constructing phylogenetic trees, including ancestral gene orders. We extend this to genomes with unequal gene content and to genomes containing gene families. Applied to streptophyte phylogeny, our method does not support the positioning of the complex algae Charales as a sister group to the land plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bérard, S., Bergeron, A., Chauve, C.: Conservation of combinatorial structures in evolution scenarios. In: Lagergren, J. (ed.) RECOMB-WS 2004. LNCS (LNBI), vol. 3388, pp. 1–14. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Bergeron, A., Blanchette, M., Chateau, A., Chauve, C.: Reconstructing ancestral gene orders using conserved intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 14–25. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Bergeron, A., Heber, S., Stoye, J.: Common intervals and sorting by reversal: a marriage of necessity. Bioinformatics 18, S54–S63 (2002)

    Google Scholar 

  4. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 69–79. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Booth, K., Luekar, G.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences 13, 335–379 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bourque, G., Pevzner, P.A.: Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Research 12, 26–36 (2002)

    Google Scholar 

  7. Caprara, A.: On the practical solution of the reversal median problem. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 238–251. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Fitch, W.: Toward defining the course of evolution: Minimum change for a specific tree topology. Systematic Zoology 20, 406–416 (1971)

    Article  Google Scholar 

  9. Hartigan, J.A.: Minimum mutation fits to a given tree. Biometrics 29, 53–65 (1973)

    Article  Google Scholar 

  10. Lemieux, C., Otis, C., Turmel, M.: Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403, 649–652 (2000)

    Article  Google Scholar 

  11. Meidanis, J., Munuera, E.G.: A theory for the consecutive ones property. In: Ziviani, N., Baeza-Yates, R. (eds.) Proceedings of WSP 1997 - Third South American Workshop on String Processing, pp. 194–202. Carleton University Press, Ottawa (1996)

    Google Scholar 

  12. Nadeau, J.H., Taylor, B.: Lengths of chromosomal segments conserved since divergence of man and mouse. Proc. Natl. Acad. Sci. USA 81, 814–818 (1984)

    Article  Google Scholar 

  13. Ohyama, K., Fukuzawa, H., Kohchi, T., et al.: Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322, 572–574 (1986)

    Article  Google Scholar 

  14. Parida, L.: A PQ tree-based framework for reconstructing common ancestors under inversions and transpositions. IBM Research Report RC 23837 (2005)

    Google Scholar 

  15. Sankoff, D., Blanchette, M.: The median problem for breakpoints in comparative genomics. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276, pp. 251–263. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  16. Sankoff, D., Bryant, D., Deneault, M., Lang, F., Burger, G.: Early eukaryote evolution based on mitochondrial gene order breakpoints. Journal of Computational Biology 7, 521–535 (2000)

    Article  Google Scholar 

  17. Sankoff, D., Rousseau, P.: Locating the vertices of a Steiner tree in an arbitrary metric space. Mathematical Programming 9, 240–246 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sankoff, D., Sundaram, G., Kececioglu, J.: Steiner points in the space of genome rearrangements. International Journal of the Foundations of Computer Science 7, 1–9 (1996)

    Article  MATH  Google Scholar 

  19. Siepel, A., Moret, B.: Finding an optimal inversion median: Experimental results. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 189–203. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Tang, J., Moret, B.M.E.: Phylogenetic reconstruction from gene-rearrangement data with unequal gene content. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 37–46. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Telles, G.P., Meidanis, J.: Building PQR trees in almost-linear time. In: Feofiloff, P., de Figueiredo, C.M.H., Wakabayashi, Y. (eds.) Proceedings of GRACO 2005. Electronic Notes in Discrete Mathematics, vol. 19, pp. 1–416 (2005)

    Google Scholar 

  22. Turmel, M., Otis, C., Lemieux, C.: The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc. Natl. Acad. Sci. USA 99, 11275–11280 (2002)

    Article  Google Scholar 

  23. Turmel, M., Otis, C., Lemieux, C.: The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales. BMC Biology 3, 22 (2005)

    Article  Google Scholar 

  24. Turmel, M., Otis, C., Lemieux, C.: The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Mol. Biol. Evol. 23, 1324–1338 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adam, Z., Turmel, M., Lemieux, C., Sankoff, D. (2006). Common Intervals and Symmetric Difference in a Model-Free Phylogenomics, with an Application to Streptophyte Evolution. In: Bourque, G., El-Mabrouk, N. (eds) Comparative Genomics. RCG 2006. Lecture Notes in Computer Science(), vol 4205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864127_6

Download citation

  • DOI: https://doi.org/10.1007/11864127_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44529-6

  • Online ISBN: 978-3-540-44530-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics