Skip to main content

How Pseudo-boolean Programming Can Help Genome Rearrangement Distance Computation

  • Conference paper
Comparative Genomics (RCG 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4205))

Included in the following conference series:

Abstract

Computing genomic distances between whole genomes is a fundamental problem in comparative genomics. Recent researches have resulted in different genomic distance definitions: number of breakpoints, number of common intervals, number of conserved intervals, Maximum Adjacency Disruption number (MAD), etc. Unfortunately, it turns out that, in presence of duplications, most problems are NP-hard, and hence several heuristics have been recently proposed. However, while it is relatively easy to compare heuristics between them, until now very little is known about the absolute accuracy of these heuristics. Therefore, there is a great need for algorithmic approaches that compute exact solutions for these genomic distances. In this paper, we present a novel generic pseudo-boolean approach for computing the exact genomic distance between two whole genomes in presence of duplications, and put strong emphasis on common intervals under the maximum matching model. Of particular importance, we show very strong evidence that the simple LCS heuristic provides very good results on a well-known public benchmark dataset of γ-Proteobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barth, P.: A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean optimization. Technical Report MPI-I-95-2-003, Max Planck Institut Informatik, 13 pages (2005)

    Google Scholar 

  2. Blin, G., Chauve, C., Fertin, G.: The breakpoint distance for signed sequences. In: Proc. 1st Algorithms and Computational Methods for Biochemical and Evolutionary Networks (CompBioNets), pp. 3–16. KCL publications (2004)

    Google Scholar 

  3. Blin, G., Chauve, C., Fertin, G.: Genes order and phylogenetic reconstruction: Application to γ-proteobacteria. In: McLysaght, A., Huson, D.H. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3678, pp. 11–20. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Blin, G., Rizzi, R.: Conserved interval distance computation between non-trivial genomes. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 22–31. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Bourque, G., Yacef, Y., El-Mabrouk, N.: Maximizing synteny blocks to identify ancestral homologs. In: McLysaght, A., Huson, D.H. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3678, pp. 21–35. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Bryant, D.: The complexity of calculating exemplar distances. In: Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families, pp. 207–212 (2000)

    Google Scholar 

  7. Chai, D., Kuehlmann, A.: A fast pseudo-boolean constraint solver, pp. 830–835 (2003)

    Google Scholar 

  8. Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Genomes containing duplicates are hard to compare. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 783–790. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Assignment of orthologous genes via genome rearrangement. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2(4), 302–315 (2005)

    Article  Google Scholar 

  10. Eén, N., Sörensson., N.: Translating pseudo-boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

    MATH  Google Scholar 

  11. Lerat, E., Daubin, V., Moran, N.A.: From gene tree to organismal phylogeny in prokaryotes: the case of γ-proteobacteria. PLoS Biology 1(1), 101–109 (2003)

    Article  Google Scholar 

  12. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–917 (1999)

    Article  Google Scholar 

  13. Sankoff, D., Haque, L.: Power boosts for cluster tests. In: McLysaght, A., Huson, D.H. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3678, pp. 11–20. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons, Chichester (1998)

    MATH  Google Scholar 

  15. Sheini, H.M., Sakallah, K.A.: Pueblo: A hybrid pseudo-boolean SAT solver. Journal on Satisfiability, Boolean Modeling and Computation 2, 165–189 (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angibaud, S., Fertin, G., Rusu, I., Vialette, S. (2006). How Pseudo-boolean Programming Can Help Genome Rearrangement Distance Computation. In: Bourque, G., El-Mabrouk, N. (eds) Comparative Genomics. RCG 2006. Lecture Notes in Computer Science(), vol 4205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864127_7

Download citation

  • DOI: https://doi.org/10.1007/11864127_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44529-6

  • Online ISBN: 978-3-540-44530-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics