Skip to main content

Exploring Gafni’s Reduction Land: From Ωk to Wait-Free Adaptive \((2p-\lceil\frac{p}{k}\rceil)\)-Renaming Via k-Set Agreement

  • Conference paper
Distributed Computing (DISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4167))

Included in the following conference series:

Abstract

The adaptive renaming problem consists in designing an algorithm that allows p processes (in a set of n processes) to obtain new names despite asynchrony and process crashes, in such a way that the size of the new renaming space M be as small as possible. It has been shown that M=2p–1 is a lower bound for that problem in asynchronous atomic read/write register systems.

This paper is an attempt to circumvent that lower bound. To that end, considering first that the system is provided with a k-set object, the paper presents a surprisingly simple adaptive M-renaming wait-free algorithm where \(M=2p-\lceil\frac{p}{k}\rceil\). To attain this goal, the paper visits what we call Gafni’s reduction land, namely, a set of reductions from one object to another object as advocated and investigated by Gafni. Then, the paper shows how a k-set object can be implemented from a leader oracle (failure detector) of a class denoted Ωk. To our knowledge, this is the first time that the failure detector approach is investigated to circumvent the M=2p–1 lower bound associated with the adaptive renaming problem. In that sense, the paper establishes a connection between renaming and failure detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snapshots of Shared Memory. Journal of the ACM 40(4), 873–890 (1993)

    Article  MATH  Google Scholar 

  2. Afek, Y., Merritt, M.: Fast, Wait-Free (2k − 1)-Renaming. In: Proc. 18th ACM Symp. on Principles of Dist. Comp (PODC 1999), pp. 105–112. ACM Press, New York (1999)

    Google Scholar 

  3. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an Asynchronous Environment. Journal of the ACM 37(3), 524–548 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Attiya, H., Fouren, A.: Polynomial and Adaptive Long-Lived (2k - 1)-Renaming. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 149–163. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edn., 414 pages. Wiley-Interscience, Chichester (2004)

    Google Scholar 

  6. Borowsky, E., Gafni, E.: Immediate Atomic Snapshots and Fast Renaming. In: Proc. 12th ACM Symp. on Principles of Distr. Comp. (PODC 1993), pp. 41–51 (1993)

    Google Scholar 

  7. Borowsky, E., Gafni, E.: Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations. In: Proc. 25th ACM STOC, pp. 91–100 (1993)

    Google Scholar 

  8. Chandra, T., Hadzilacos, V., Toueg, S.: The Weakest Failure Detector for Solving Consensus. Journal of the ACM 43(4), 685–722 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gafni, E.: Read/Write Reductions. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Gafni, E., Rajsbaum, S., Raynal, M., Travers, C.: The Committee Decision Problem. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 502–514. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Guerraoui, R., Raynal, M.: The Alpha of Asynchronous Consensus. The Computer Journal (to appear)

    Google Scholar 

  12. Herlihy, M.P.: Wait-Free Synchronization. ACM TOPLAS 13(1), 124–149 (1991)

    Article  Google Scholar 

  13. Herlihy, M.P., Shavit, N.: The Topological Structure of Asynchronous Computability. Journal of the ACM 46(6), 858–923 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lamport, L.: The Part-Time Parliament. ACM TOCS 16(2), 133–169 (1998)

    Article  Google Scholar 

  15. Mostefaoui M., Raynal M., Travers C.: Exploring Gafni’s Reduction land: from Ωk to Wait-free adaptive (\(2p-\lceil\frac{p}{k}\rceil\))-renaming via k-set Agreement. Tech Report #1676, IRISA, Université de Rennes (France) (2006)

    Google Scholar 

  16. Neiger, G.: Failure Detectors and the Wait-Free Hierarchy. In: Proc. 14th Int’l ACM Symp. on Principles of Dist. Comp (PODC 1995), pp. 100–109. ACM Press, New York (1995)

    Google Scholar 

  17. Saks, M., Zaharoglou, F.: Wait-Free k-Set Agreement is Impossible: The Topology of Public Knowledge. SIAM Journal on Computing 29(5), 1449–1483 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mostefaoui, A., Raynal, M., Travers, C. (2006). Exploring Gafni’s Reduction Land: From Ωk to Wait-Free Adaptive \((2p-\lceil\frac{p}{k}\rceil)\)-Renaming Via k-Set Agreement. In: Dolev, S. (eds) Distributed Computing. DISC 2006. Lecture Notes in Computer Science, vol 4167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864219_1

Download citation

  • DOI: https://doi.org/10.1007/11864219_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44624-8

  • Online ISBN: 978-3-540-44627-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics