Skip to main content

A Fast Offline Building Recognition Application on a Mobile Telephone

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4179))

  • 927 Accesses

Abstract

Today most mobile telephones come equipped with a camera. This gives rise to interesting new possibilities for applications of computer vision, such as building recognition software running locally on the mobile phone. Algorithms for building recognition need to be robust under noise, occlusion, varying lighting conditions and different points of view. We present such an algorithm using local invariant regions which allows for mobile building recognition despite the limited processing power and storage capacity of mobile phones. This algorithm was shown to obtain state of the art performance on the Zürich Building Database (91% accuracy). An implementation on a mobile phone (Sony Ericsson K700i) is presented that obtains good performance (80% accuracy) on a dataset using real-world query images taken under varying, suboptimal conditions. Our algorithm runs in the order of several seconds while requiring only around 10 KB of memory to represent a single building within the local database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bentley, J.L., Weide, Yao, A.: Optimal expected time algorithms for closest point problem. ACM Transactions on Mathematical Software 6(4), 563–580 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fritz, G., Seifert, C., Paletta, L.: A Mobile Vision System for Urban Detection with Informative Local Descriptors. In: ICVS 2006, vol. 4, p. 30 (2006)

    Google Scholar 

  3. Goedeme, T., Tuytelaars, T., van Gool, L.: Fast Wide Baseline Matching for Visual Navigation. In: CVPR 2004, vol. 1 (2004)

    Google Scholar 

  4. Lowe, G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision (2004)

    Google Scholar 

  5. Marée, R., Guerts, P., Piater, J., et al.: Decision Trees and Random Subwindows for Object Recognition. In: ICML workshop on Machine Learning Techniques for Processing Multimedia Content, MLMM 2005 (2005)

    Google Scholar 

  6. Matas, J., Obdržálek, S.: Object Recognition methods Based on Transformation Covariant Features, XII. In: European Signal Processing Conference (2004)

    Google Scholar 

  7. Mindru, F., Moons, T., van Gool, L.: Recognizing color patterns irrespective of viewpoint and illumination. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 368–373 (1999)

    Google Scholar 

  8. Obdrzálek, S., Matas, J.: Sub-linear indexing for large scale object recognition. In: Proceedings of the British Machine Vision Conference, vol. 1, pp. 1–10 (2005)

    Google Scholar 

  9. Obdržálek, Š., Matas, J.: Image Retrieval Using Local Compact DCT-Based Representation. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 490–497. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Shao, T.S.H., Gool, L.V.: Zubud-zurich buildings database for image based recognition. Technique report No. 260, Swiss Federal Institute of Technology (2003)

    Google Scholar 

  11. Shao, H., Svoboda, T., Tuytelaars, T., van Gool, L.: indexing for fast object/scene recognition based on local appearance. In: Bakker, E.M., Lew, M., Huang, T.S., Sebe, N., Zhou, X.S. (eds.) CIVR 2003. LNCS, vol. 2728, pp. 71–80. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Swain, M., Ballard, D.: Color Indexing. International Journal of Computer Vision 7, 11–32 (1991)

    Article  Google Scholar 

  13. Tuytelaars, T., van Gool, L.J.: Wide baseline stereo based on local affinely invariant regions. In: British Machine Vision Conference (2000)

    Google Scholar 

  14. Zhang, W., Kosecka, J.: Localization based on Building Recognition. In: Workshop on Applications for Visually Impaired, IEEE Conference, CVPR (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Groeneweg, N.J.C., de Groot, B., Halma, A.H.R., Quiroga, B.R., Tromp, M., Groen, F.C.A. (2006). A Fast Offline Building Recognition Application on a Mobile Telephone. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_102

Download citation

  • DOI: https://doi.org/10.1007/11864349_102

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44630-9

  • Online ISBN: 978-3-540-44632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics