Skip to main content

Adaptative Road Lanes Detection and Classification

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2006)

Abstract

This paper presents a Road Detection and Classification algorithm for Driver Assistance Systems (DAS), which tracks several road lanes and identifies the type of lane boundaries. The algorithm uses an edge filter to extract the longitudinal road markings to which a straight lane model is fitted. Next, the type of right and left lane boundaries (continuous, broken or merge line) is identified using a Fourier analysis. Adjacent lanes are searched when broken or merge lines are detected. Although the knowledge of the line type is essential for a robust DAS, it has been seldom considered in previous works. This knowledge helps to guide the search for other lanes, and it is the basis to identify the type of road (one-way, two-way or freeway), as well as to tell the difference between allowed and forbidden maneuvers, such as crossing a continuous line.

This work is partially supported by the Spanish government through the CICYT project ASISTENTUR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aufrére, R., Chapuis, R., Chausse, F.: A model-driven approach for real-time road recognition. Machine Vision and Applications 13(2), 95–107 (2001)

    Article  Google Scholar 

  2. Broggi, A.: Robust real-time lane and road detection in critical shadow conditions. In: IEEE International Symposium on Computer Vision, Coral Gables, Florida, November 19-21, 1995, pp. 353–358. IEEE Computer Society Press, Los Alamitos (1995)

    Chapter  Google Scholar 

  3. Campbell, N.W., Thomas, B.T.: Navigation of an autonomous road vehicle using lane boundary markings. In: Charnley, D. (ed.) 1st IFAC Int. Conference on Intelligent Autonomous Vehicles, pp. 169–174. Pergamon Press, Oxford (1993)

    Google Scholar 

  4. Chapuis, R., Aufrere, R., Chausse, F.: Accurate road following and reconstruction by computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 3(4) (December 2002)

    Google Scholar 

  5. Collado, J.M., Hilario, C., de la Escalera, A., Armingol, J.M.: Self-calibration of an on-board stereo-vision system for driver assistance systems. In: IEEE Intelligent Vehicle Symposium, Tokyo, Japan, June 13-15 (2006)

    Google Scholar 

  6. DeMenthon, D.: A zero-bank algorithm for inverse perspective of a road from a single image. In: IEEE International Conference on Robotics and Automation, Raleigh, NC, April 1987, pp. 1444–1449 (1987)

    Google Scholar 

  7. Dickmans, E.D., Mysliwetz, B.D.: Recursive 3-d road and relative ego-state recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 199–213 (1992)

    Article  Google Scholar 

  8. Hilario, C., Collado, J.M., Armingol, J.M., de la Escalera, A.: Pyramidal image analysis for vehicle detection. In: IEEE Intelligent Vehicle Symposium, Las Vegas, Nevada, U.S.A, June 6-8, 2005, pp. 87–92 (2005)

    Google Scholar 

  9. Hough, P.V.C.: Machine analysis of bubble chamber pictures. In: CERN (ed.) International Conference on High Energy Accelerators and Instrumentation, pp. 554–556 (1959)

    Google Scholar 

  10. Isard, M., Blake, A.: Condensation – conditional density propagation for visual tracking. International Journal of Computer Vision 29(1), 5–28 (1998)

    Article  Google Scholar 

  11. Kanatani, K., Watanabe, K.: Reconstruction of 3-d road geometry from images for autonomous land vehicles. IEEE Transactions on Robotics and Automation 6(1) (February 1990)

    Google Scholar 

  12. Kluge, K., Lakshmanan, S.: A deformable-template approach to lane detection. In: Proceedings of the Intelligent Vehicles 1995 Symposium, September 25-26, 1995, pp. 54–59 (1995)

    Google Scholar 

  13. Risack, R., Klausmann, P., Küger, W., Enkelmann, W.: Robust lane recognition embedded in a real-time driver assistance system. In: IEEE International Conference on Intelligent Vehicles, pp. 35–40 (1998)

    Google Scholar 

  14. Southall, B., Taylor, C.J.: Stochastic road shape estimation. In: 8th IEEE International Conference on Computer Vision (ICCV), July 7-14, 2001, vol. 1, pp. 205–212 (2001)

    Google Scholar 

  15. Wang, Y., Shen, D., Teoh, E.K.: Lane detection using spline model. Pattern Recognition Letters 21(8), 677–689 (2000)

    Article  Google Scholar 

  16. Wang, Y., Teoh, E.K., Shen, D.: Lane detection and tracking using b-snake. Image and Vision computing 22, 269–280 (2004)

    Article  Google Scholar 

  17. Yuille, A.L., Coughlan, J.M.: Fundamental limits of bayesian inference: order parameters and phase transitions for road tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(2), 160–173 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Collado, J.M., Hilario, C., de la Escalera, A., Armingol, J.M. (2006). Adaptative Road Lanes Detection and Classification. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_105

Download citation

  • DOI: https://doi.org/10.1007/11864349_105

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44630-9

  • Online ISBN: 978-3-540-44632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics