Abstract
A new multidimensional modeling of data has recently been introduced, which can be used a wide range of signals. This paper presents multiway filtering for denoising hyperspectral images. This approach is based on a tensorial modeling of the desired information. The optimization criterion used in this multiway filtering is the minimization of the mean square error between the estimated signal and the desired signal. This minimization leads to some estimated n-mode filters which can be considered as the extension of the well-known Wiener filter in a particular mode. An ALS algorithm is proposed to determine each n-mode Wiener filter. Using the ALS loop allows to take into account the mode interdependence. This algorithm requires the signal subspace estimation for each mode. In this study, we have extended the well-know Akaike Information Criterion (AIC) and the minimum description length (MDL) criterion to detect the number of dominant eigenvalues associated with the signal subspace. The performance of this new method is tested on hyperspectral images. Comparative studies with classical bidimensional filtering methods show that our algorithm presents good performances.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Comon, P.: Tensor decompositions, state of the art and applications. In: IMA Conf. mathematics in Signal Processing, Warwick, UK (2000)
Muti, D., Bourennane, S.: Multidimensional filtering based on a tensor approach. Signal Proceesing Journal 85, 2338–2353 (2005)
Muti, D., Bourennane, S.: Multiway filtering based on fourth order cumulants. Applied Signal Processing, EURASIP 7, 1147–1159 (2005)
Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311 (1966)
Muti, D., Bourennane, S.: Survey on tensor signal algebraic filtering. Signal Proceesing Journal (to be published) (2006)
Le Bihan, N.: Traitement algébrique des signaux vectoriels: Application á la séparation d’ondes sismiques. Phd thesis, INPG, Grenoble, France (2001)
Muti, D., Bourennane, S.: Multidimensional signal processing using lower rank tensor approximation. In: IEEE Int. Conf. on Accoustics, Systems and Signal Processing, Hong Kong, China (2003)
Wax, M., Kailath, T.: Detection of signals information theoretic criteria. In: IEEE International Conference on Acoustics Speech and Signal Processing, vol. 33, pp. 387–392 (1985)
De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications 21, 1253–1278 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Renard, N., Bourennane, S., Blanc-Talon, J. (2006). Multiway Filtering Applied on Hyperspectral Images. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_12
Download citation
DOI: https://doi.org/10.1007/11864349_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44630-9
Online ISBN: 978-3-540-44632-3
eBook Packages: Computer ScienceComputer Science (R0)