Skip to main content

A New Fuzzy-Based Wavelet Shrinkage Image Denoising Technique

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4179))

  • 911 Accesses

Abstract

This paper focuses on fuzzy image denoising techniques. In particular, we investigate the usage of fuzzy set theory in the domain of image enhancement using wavelet thresholding. We propose a simple but efficient new fuzzy wavelet shrinkage method, which can be seen as a fuzzy variant of a recently published probabilistic shrinkage method [1] for reducing adaptive Gaussian noise from digital greyscale images. Experimental results show that the proposed method can efficiently and rapidly remove additive Gaussian noise from digital greyscale images. Numerical and visual observations show that the performance of the proposed method outperforms current fuzzy non-wavelet methods and is comparable with some recent but more complex wavelets methods. We also illustrate the main differences between this version and the probabilistic version and show the main improvements in comparison to it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pižurica, A., Philips, W.: Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising. IEEE Transactions on Image Process. 15(3), 654–665 (2006)

    Article  Google Scholar 

  2. Resnikoff, H.L., Wells, R.O.: Wavelet Analysis: The Scalable Structure of Information. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  3. Donoho, D.: Denoising by soft-thresholding. IEEE Transactions on Information Theory 41(5), 613–627 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Donoho, D., Johnstone, I.: Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association 90, 1200–1224 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chang, S., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing 9(9), 1532–1546 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hansen, M., Yu, B.: Wavelet thresholding via mdl for natural images. IEEE Transactions on Information Theory 46(8), 1778–1788 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Simoncelli, E., Adelson, E.: Noise removal via Bayesian wavelet coring. In: Proceedings IEEE International Conference on Image Processing (ICIP 1996), Lausanne, Switserland, pp. 379–382 (1996)

    Google Scholar 

  8. Moulin, P., Liu, J.: Analysis of multiresolution image denoising schemes using generalized gaussian and complexity priors. IEEE Transactions on Information Theory 45(4), 909–919 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Pižurica, A., Philips, W., Lemahieu, I., Acheroy, M.: A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising. IEEE Transactions on Image Processing 11(5), 545–557 (2002)

    Article  Google Scholar 

  10. Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.: Image denoising using gaussian scale mixtures in the wavelet domain. IEEE Transactions on Image Processing 12(11), 1338–1351 (2003)

    Article  MathSciNet  Google Scholar 

  11. Vidakovic, B.: Nonlinear wavelet shrinkage with bayes rules and bayes factors. Journal of the American Statistical Association 93, 173–179 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chipman, H., Kolaczyk, E., McCulloch, R.: Adaptive Bayesian wavelet shrinkage. Journal of the American Statistical Association 92, 1413–1421 (1997)

    Article  MATH  Google Scholar 

  13. Sendur, L., Selesnick, I.: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing 50(11), 2744–2756 (2002)

    Article  Google Scholar 

  14. Crouse, M., Nowak, R., Baranuik, R.: Wavelet-based statistical signal processing using hidden Markov models. IEEE Transactions on Signal Processing 46(4), 886–902 (1998)

    Article  MathSciNet  Google Scholar 

  15. Romberg, J., Choi, H., Baraniuk, R.: Bayesian tree-structured image modeling using wavelet-domain hidden markov models. IEEE Transactions on Image Processing 10, 1056–1068 (2001)

    Article  Google Scholar 

  16. Malfait, M., Roose, D.: Wavelet-based image denoising using a markov random field a priori model. IEEE Transactions on Image Processing 6(4), 549–565 (1997)

    Article  Google Scholar 

  17. Jansen, M., Bultheel, A.: Empirical Bayes approach to improve wavelet thresholding for image noise reduction. Journal of the American Statistical Association 96(454), 629–639 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mihcak, M., Kozintsev, I., Ramchandran, K., Moulin, P.: Low complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Processing Letters 6, 300–303 (1999)

    Article  Google Scholar 

  19. Fan, G., Xia, X.: Image denoising using local contextual hidden markov model in the wavelet domain. IEEE Signal Processing Letters 8(5), 125–128 (2001)

    Article  MathSciNet  Google Scholar 

  20. Fan, G., Xia, X.: Improved hidden Markov models in the wavelet domain. IEEE Transactions on Signal Processing 49, 115–120 (2001)

    Article  Google Scholar 

  21. Kerre, E.E.: Fuzzy sets and approximate Reasoning. Xian Jiaotong University Press (1998)

    Google Scholar 

  22. Tizhoosh, H.R.: Fuzzy-Bildverarbeitung: Einführung in Theorie und Praxis. Springer, Heidelberg (1997)

    Google Scholar 

  23. Zadeh, L.A.: Fuzzy Sets. Information and Control 8(3), 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zadeh, L.A.: Fuzzy logic and its application to approximate reasoning. Information Processing 74, 591–594 (1973)

    Google Scholar 

  25. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Van De Ville, D., Nachtegael, M., Van der Weken, D., Kerre, E.E., Philips, W.: Noise reduction by fuzzy image filtering. IEEE Transactions on Fuzzy Systems 11(4), 429–436 (2003)

    Article  Google Scholar 

  27. Schulte, S., De Witte, V., Nachtegael, M., Van der Weken, D., Kerre, E.E.: Fuzzy Random Impulse Noise Reduction Method. Fuzzy Sets and Systems (submitted) (2006)

    Google Scholar 

  28. Wang, J.H., Chiu, H.C.: An adaptive fuzzy filter for restoring highly corrupted images by histogram estimation. Proceedings of the National Science Council -Part A 23, 630–643 (1999)

    Google Scholar 

  29. Farbiz, F., Menhaj, M.B., Motamedi, S.A.: Edge Preserving Image Filtering based on Fuzzy Logic. In: Proceedings of the 6th EUFIT conference, pp. 1417–1421 (1998)

    Google Scholar 

  30. Kwan, H.K., Cai, Y.: Fuzzy filters for image filtering. In: Proceedings of Circuits and Systems (MWSCAS 2002). The 2002 45th Midwest Symposium, pp. III-672–III-675 (2002)

    Google Scholar 

  31. Xu, H., Zhu, G., Peng, H., Wang, D.: Adaptive fuzzy switching filter for images corrupted by impulse noise. Pattern Recognition Letters 25, 1657–1663 (2004)

    Article  Google Scholar 

  32. Tolt, G., Kalaykov, I.: Fuzzy-similarity-based Noise Cancellation for Real-time Image Processing. In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), vol. 1, pp. 15–18

    Google Scholar 

  33. Tolt, G., Kalaykov, I.: Fuzzy-Similarity-Based Image Noise Cancellation. In: Pal, N.R., Sugeno, M. (eds.) AFSS 2002. LNCS, vol. 2275, pp. 408–413. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  34. Kuo, Y.H., Lee, C.S., Chen, C.L.: High-stability AWFM filter for signal restoration and its hardware design. Fuzzy Sets and Systems 114(2), 185–202 (2000)

    Article  MATH  Google Scholar 

  35. Şendur, L., Selesnick, I.W.: Bivariate Shrinkage Functions for Wavelet-based Image Denoising. IEEE Transactions on Signal Processing 50(11), 2744–2756 (2002)

    Article  Google Scholar 

  36. Balster, E.J., Zheng, Y.F., Ewing, R.L.: Feature-based wavelet shrinkage algorithm for image denoising. IEEE Transactions on Image Process 14(3), 2024–2039 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schulte, S., Huysmans, B., Pižurica, A., Kerre, E.E., Philips, W. (2006). A New Fuzzy-Based Wavelet Shrinkage Image Denoising Technique. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_2

Download citation

  • DOI: https://doi.org/10.1007/11864349_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44630-9

  • Online ISBN: 978-3-540-44632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics