Skip to main content

Constrained Region-Growing and Edge Enhancement Towards Automated Semantic Video Object Segmentation

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4179))

  • 841 Accesses

Abstract

Most existing object segmentation algorithms suffer from a so-called under-segmentation problem, where parts of the segmented object are missing and holes often occur inside the object region. This problem becomes even more serious when the object pixels have similar intensity values as that of backgrounds. To resolve the problem, we propose a constrained region-growing and contrast enhancement to recover those missing parts and fill in the holes inside the segmented objects. Our proposed scheme consists of three elements: (i) a simple linear transform for contrast enhancement to enable stronger edge detection; (ii) an 8-connected linking regional filter for noise removal; and (iii) a constrained region-growing for elimination of those internal holes. Our experiments show that the proposed scheme is effective towards revolving the under-segmentation problem, in which a representative existing algorithm with edge-map based segmentation technique is used as our benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Harris, K., Efstratiadis, S.N., Maglaveras, N., Katsaggelos, A.K.: Hybrid image segmentation using watersheds and fast region merging. IEEE Trans. on image processing 7(12), 1684–1699 (1998)

    Article  Google Scholar 

  2. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)

    Article  Google Scholar 

  3. O’Callaghan, R.J., Bull, D.R.: Combined Morphological-Spectral unsupervised image segmentation. IEEE Trans. on image processing 14(1), 49–62 (2005)

    Article  Google Scholar 

  4. Tsai, Y.P., Lai, C.C., Hung, Y.P., et al.: A Bayesian approach to video object segmentation via merging 3-D watershed volumes. IEEE Trans. on Circuits and Systems for Video Tech. 15(1), 175–180 (2005)

    Article  Google Scholar 

  5. Jung, C.R., Scharcanski, J.: Robust watershed segmentation using wavelets. Image and Vision Computing 23(7), 661–669 (2005)

    Article  Google Scholar 

  6. Kim, M., et al.: A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information. IEEE Trans. Circuits, Systems for Video Technology 9(8), 1216–1227 (1999)

    Article  Google Scholar 

  7. Kim, C., Hwang, J.N.: Fast and automatic video object segmentation and tracking for content-based applications. IEEE Trans. Circuits and Systems for Video Technology 12(2), 122–128 (2002)

    Article  Google Scholar 

  8. Salembier, P., Pardas, M.: Hierarchical morphological segmentation for image sequence coding. IEEE Trans. Image Processing 3(5), 639–648 (1994)

    Article  Google Scholar 

  9. Chien, S.Y., et al.: Efficient moving object segmentation algorithm using background registration technique. IEEE Trans. Circuits and Systems for Video Technology 12(7), 577–589 (2002)

    Article  MathSciNet  Google Scholar 

  10. Shamim, A., Robinson, A.: Object-based video coding by global-to-local motion segmentation. IEEE Trans. Circuits, Systems for Video Technology 12(12), 1106–1115 (2002)

    Article  Google Scholar 

  11. Feng, G.C., Jiang, J.: Image segmentation in compressed domain. Journal of Electronic Imaging, SPIE 12(3), 390–397 (2003)

    Article  Google Scholar 

  12. Toklu, C., et al.: Semi-automatic video object segmentation in the presence of occlusion. IEEE Trans. Circuits and Systems for Video Technology 10(4), 624–635 (2000)

    Article  Google Scholar 

  13. Kervrann, C., Heitz, F.: Statistical deformable model-based segmentation of image motion. IEEE Trans. Image Processing 8(4), 583–594 (1999)

    Article  Google Scholar 

  14. Meier, T., Ngan, K.: Automatic segmentation of moving objects for video object plane generation. IEEE Trans. Circuits, Systems for Video Tech. 8(5), 525 (1998)

    Article  Google Scholar 

  15. Xu, Y., et al.: Object-based image labeling through learning by example and multi-level segmentation. Pattern Recognition 36, 1407–1423 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, L., Jiang, J., Yang, S.Y. (2006). Constrained Region-Growing and Edge Enhancement Towards Automated Semantic Video Object Segmentation. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_29

Download citation

  • DOI: https://doi.org/10.1007/11864349_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44630-9

  • Online ISBN: 978-3-540-44632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics