Abstract
Choosing the adequate registration and simulation parameters in non-parametric image registration methods is an open question. There is no agreement about which are the optimal values (if any) for these parameters, since they depend on the images to be registered. As a result, in the literature the parameters involved in the registration process are arbitrarily fixed by the authors. The present paper is intended to address this issue. A two-step method is proposed to obtain the optimal values of these parameters, in terms of achieving in a minimum number of iterations the best trade-off between similarity of the images and smoothness of the transformation. These optimal values minimize the joint energy functional defined in a variational framework. We focus on the specific formulation of diffusion and curvature registration, but the exposed methodology can be directly applied to other non-parametric registration schemes. The proposed method is validated over different registration scenarios.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brown, L.G.: A survey of image registration techniques. ACM Computing Survey 24(4), 325–376 (1992)
Zitová, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21, 997–1000 (2003)
Maintz, J., Viergever, M.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)
Lester, H., Arridge, S.: A survey of hierarchical non-linear medical image registration. Pattern Recognition 32, 129–149 (1999)
Hajnal, J., Hill, D., Hawkes, D.: Medical image registration. CRC Press, Boca Raton (2001)
Goshtasby, A.: Registration of images with geometric distortions. IEEE Transactions on Geoscience and Remote Sensing 26, 60–64 (1988)
Rohr, K.: Landmark-based image analysis: using geometric and intensity models. Computational Imaging and Vision Series, vol. 21. Kluwer Academic Publishers, Dordrecht (2001)
Bajcsy, R., Kovacic, S.: Multiresolution elastic matching. Computer Vision, Graphics, and Image Processing 46(1), 1–21 (1989)
Bro-Nielsen, M., Gramkow, C.: Fast fluid registration of medical images. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 267–276. Springer, Heidelberg (1996)
Fischer, B., Modersitzki, J.: Fast diffusion registration. In: Nashed, M.Z., Scherzer, O. (eds.) Contemporary Mathematics 313, Inverse Problems, Image Analysis, and Medical Imaging, pp. 117–129. AMS (2002)
Fischer, B., Modersitzki, J.: Curvature based image registration. Journal of Mathematical Imaging and Vision 18(1), 81–85 (2003)
Golub, G., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979)
Fischer, B., Modersitzki, J.: Large scale problems arising from image registration. GAMM Mitteilungen 27(2), 104–120 (2004)
Ue, H., Haneishi, H., Iwanaga, H., Suga, K.: Nonlinear motion correction of respiratory-gated lung SPECT images. IEEE Transactions of Medical Imaging 25(4), 486–495 (2006)
Amit, Y.: A nonlinear variational problem for image matching. SIAM Journal of Scientific Computing 15(1), 207–224 (1994)
Fischer, B., Modersitzki, J.: Fast image registration - a variational approach. In: Psihoyios, G. (ed.) Proceedings of the International Conference on Numerical Analysis & Computational Mathematics, pp. 69–74. Wiley, Chichester (2003)
Zhang, Z., Jiang, Y., Tsui, H.: Consistent multi-modal non-rigid registration based on a variational approach. Pattern Recognition Letters 27, 715–725 (2006)
Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)
Thirion, J.-P.: Image matching as a diffusion process: an analogy with maxwell’s demons. Medical Image Analysis 2(3), 243–260 (1998)
Fischer, B., Modersitzki, J.: A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra and its Applications 308, 107–124 (2004)
Braumann, U.-D., Kuska, J.-P.: Influence of the boundary conditions on the results of non-linear image registration. In: IEEE International Conference on Image Processing, vol. I, pp. 1129–1132 (2005)
Noblet, V., Heinrich, C., Heitz, F., Armspach, J.-P.: Retrospective evaluation of a topology preserving non-rigid registration method. Medical Image Analysis (in press, 2006)
Johnson, K., Becker, J.: The Whole Brain Atlas (1995–1999), www.med.harvard.edu/aanlib/home.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Larrey-Ruiz, J., Morales-Sánchez, J. (2006). Optimal Parameters Selection for Non-parametric Image Registration Methods. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_52
Download citation
DOI: https://doi.org/10.1007/11864349_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44630-9
Online ISBN: 978-3-540-44632-3
eBook Packages: Computer ScienceComputer Science (R0)