Skip to main content

A New Stereo Matching Model Using Visibility Constraint Based on Disparity Consistency

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4179))

Abstract

There have been many progresses in the stereo matching problem. However, some remaining problems still make stereo matching difficult. Occlusion is one of such problems. In this paper, we propose a new stereo matching model that addresses this problem by using an effective visibility constraint. By considering two images simultaneously, complex geometric configurations regarding the visibility of a pixel becomes simplified, so that the visibility constraint can be modeled as a pairwise MRF. Also since the proposed model enforces the consistency between two disparity maps, the final results become consistent with each other. Belief propagation is employed for the solution of the modeled pairwise MRF. Experimental results on the standard data set demonstrate the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sun, J., Li, Y., Kang, S.B., Shum, H.Y.: Symmetric stereo matching for occlusion handling. In: CVPR 2005, vol. II, pp. 399–406 (2005)

    Google Scholar 

  2. Wei, Y., Quan, L.: Asymmetrical occlusion handling using graph cut for multi-view stereo. In: CVPR 2005, vol. II, pp. 902–909 (2005)

    Google Scholar 

  3. Williams, O., Isard, M., MacCormick, J.: Estimating disparity and occlusions in stereo video sequences. In: CVPR 2005, vol. II, pp. 250–257 (2005)

    Google Scholar 

  4. Marr, D., Poggio, T.A.: Cooperative computation of stereo disparity. Science 194, 283–287 (1976)

    Article  Google Scholar 

  5. Zitnick, C.L., Kanade, T.: A cooperative algorithm for stereo matching and occlusion detection. PAMI 22, 675–684 (2000)

    Google Scholar 

  6. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions via graph cuts. In: CVPR 2004, vol. I, pp. 261–268 (2004)

    Google Scholar 

  7. Ogale, A.S., Aloimonos, Y.: Stereo correspondence with slanted surface: critical implication of horizontal slant. In: CVPR 2004, vol. I, pp. 568–573 (2004)

    Google Scholar 

  8. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. PAMI 23, 1222–1239 (2001)

    Google Scholar 

  9. Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 82–96. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Hong, L., Chen, G.: Segment-based stereo matching using graph cuts. In: CVPR 2004, vol. I, pp. 74–81 (2004)

    Google Scholar 

  11. Sun, J., Zheng, N., Shum, H.: Stereo matching using belief propagation. PAMI 25, 787–800 (2003)

    Google Scholar 

  12. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. PAMI 26, 147–159 (2004)

    Google Scholar 

  13. Weiss, Y., Freeman, W.T.: On the optimality of solutions of the max-product belief propagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory 47, 723–735 (2001)

    Article  MathSciNet  Google Scholar 

  14. Birchfield, S., Tomasi, C.: A pixel dissimilarity measure that is insensitive to image sampling. PAMI 20, 401–406 (1998)

    Google Scholar 

  15. Felzenszwalb, P.R., Huttenlocher, D.P.: Efficient belief propagation for early vision. In: CVPR 2004, vol. I, pp. 261–268 (2004)

    Google Scholar 

  16. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. PAMI 6, 721–741 (1984)

    MATH  Google Scholar 

  17. Greig, D., Porteous, B., Seheult, A.: Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society 51, 271–279 (1989)

    Google Scholar 

  18. Ishikawa, H.: Exact optimization for markov random fields with convex priors. PAMI 25, 1333–1336 (2003)

    Google Scholar 

  19. Pearl, J. (ed.): Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

    Google Scholar 

  20. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Generalized belief propagation. In: Advances in Neural Information Processing Systems, pp. 689–695 (2000)

    Google Scholar 

  21. Tappen, F., Freeman, W.T.: Comparison of graph cuts with belief propagation for stereo, using identical mrf parameters. In: ICCV 2003, vol. II, pp. 900–906 (2003)

    Google Scholar 

  22. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. PAMI 23, 603–619 (2001)

    Google Scholar 

  23. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 47, 7–42 (2002)

    Article  MATH  Google Scholar 

  24. Deng, Y., Yang, Q., Lin, X., Tang, X.: A symmetric patch-based correspondence model for occlusion handling. In: ICCV 2005 (2005)

    Google Scholar 

  25. Lin, M., Tomasi, C.: Surfaces with oclusions from layered stereo. PAMI 26, 1073–1078 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chang, J.Y., Lee, K.M., Lee, S.U. (2006). A New Stereo Matching Model Using Visibility Constraint Based on Disparity Consistency. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_55

Download citation

  • DOI: https://doi.org/10.1007/11864349_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44630-9

  • Online ISBN: 978-3-540-44632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics