Skip to main content

Curve Mapping Based Illumination Adjustment for Face Detection

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4179))

  • 841 Accesses

Abstract

For the robust face detection, illumination is considered as one of the great challenges. Motivated with the adaptation of the human vision system, we propose the curve mapping (CM) function to adjust the illumination conditions of the images. The lighting parameter of CM function is determined by the intensity distribution of the images. Therefore the CM function can adjust the images according to their own illumination conditions adaptively. The CM method will abandon no information of the original images and bring no noises to the images. But it will enhance the details of the images and adjust the images to the proper brightness. Consequently the CM method will make the images more discriminative. Experimental results show that it can improve the performance of the face detection with the CM method as a lighting-filter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1), 22–38 (1998)

    Article  Google Scholar 

  2. Schneiderman, H., Kanade, T.: A Statistical Method for 3D Object Detection Applied to Faces and Cars. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2000)

    Google Scholar 

  3. Li, S.Z., Zhu, L., Zhang, Z.Q., et al.: Statistical Learning of Multi-View Face Detection. In: Proc. of the 7th European Conf. on Computer Vision (2002)

    Google Scholar 

  4. Adini, Y., Moses, Y., Ullman, S.: Face recognition: the problem of compensating for changes in illumination direction. IEEE Tran. Pattern Recognition and Machine Intelligence 19(7), 721–732 (1997)

    Article  Google Scholar 

  5. Shashua, A., Riklin-Raviv, T.: The Quotient Images: Class-based Re-Rendering and Recognition with Varying Illuminations. IEEE Tran. Pattern Recognition and Machine Intelligence 23(2), 129–139 (2001)

    Article  Google Scholar 

  6. Wang, H., Li, S.Z., Wang, Y.: Generalized quotient image. In: IEEE Conference on Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  7. Belhumeur, P., Kriegman, D.: What is the set of images of an object under all possible lighting conditions? In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 270–277 (1996)

    Google Scholar 

  8. Georghiads, A., Belhumeur, P., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Tran. Pattern Recognition and Machine Intelligence 23(6), 643–660 (2001)

    Article  Google Scholar 

  9. Ramamoorith, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In: SIGGRAPH, pp. 117–128 (2001)

    Google Scholar 

  10. Basri, R., Jacobs, D.: Lambertian reflectance and linear subspace. IEEE Tran. Pattern Analysis and Machine Intelligence 25(2), 218–233 (2003)

    Article  Google Scholar 

  11. Ferwerda, J.A., Pattanaik, S.N., Shirley, P., Greenberg, D.P.: A model of visual adaptation for realistic image synthesis. In: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (1998)

    Google Scholar 

  12. Reinhard, E., Stark, M., Shirly, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Transactions on Graphics 21(3), 267–276 (2002)

    Article  Google Scholar 

  13. Xiao, R., Li, M., Zhang, H.: Robust multipose face detection in Images. IEEE trans. on Circuits and Systems for video technology 12(1), 31–41 (2004)

    Article  MathSciNet  Google Scholar 

  14. Sim, T., Baker, S., Bsat, M.: The CMU Pose, Illumination, and expression (PIE) database. In: Processing of the IEEE International Conference on Automatic Face and Gesture Recognition (2002)

    Google Scholar 

  15. Martinez, A.M., Benavente, R.: The AR Face Database. CVC Technical Report #24 (1998)

    Google Scholar 

  16. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The FERET database and evaluation procedure for face-recognition algorithms. Image and Vision Computing 16(5), 295–306 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, X., Zhao, T., Zhao, R. (2006). Curve Mapping Based Illumination Adjustment for Face Detection. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_63

Download citation

  • DOI: https://doi.org/10.1007/11864349_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44630-9

  • Online ISBN: 978-3-540-44632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics