Skip to main content

Robust Analysis of Silhouettes by Morphological Size Distributions

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4179))

  • 843 Accesses

Abstract

We address the topic of real-time analysis and recognition of silhouettes. The method that we propose first produces object features obtained by a new type of morphological operators, which can be seen as an extension of existing granulometric filters, and then insert them into a tailored classification scheme.

Intuitively, given a binary segmented image, our operator produces the set of all the largest rectangles that can be wedged inside any connected component of the image. The latter are obtained by a standard background subtraction technique and morphological filtering. To classify connected components into one of the known object categories, the rectangles of a connected component are submitted to a machine learning algorithm called EXtremely RAndomized trees (Extra-trees). The machine learning algorithm is fed with a static database of silhouettes that contains both positive and negative instances. The whole process, including image processing and rectangle classification, is carried out in real-time.

Finally we evaluate our approach on one of today’s hot topics: the detection of human silhouettes. We discuss experimental results and show that our method is stable and computationally effective. Therefore, we assess that algorithms like ours introduce new ways for the detection of humans in video sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 37, 151–172 (2000)

    Article  MATH  Google Scholar 

  2. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, Madison (WI, USA), vol. 2, pp. 257–263 (2003)

    Google Scholar 

  3. Schmid, C., Mohr, R.: Local greyvalue invariants for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 530–535 (1997)

    Article  Google Scholar 

  4. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  5. Mathes, T., Piater, J.: Robust non-rigid object tracking using point distribution models. In: Proc. of the British Machine Vision Conference, Oxford (UK), pp. 849–858 (2005)

    Google Scholar 

  6. Boulgouris, N., Hatzinakos, D., Plataniotis, K.: Gait recognition: a challenging signal processing technology for biometric identification. Ispmag 22, 78–90 (2005)

    Google Scholar 

  7. Serra, J.: Image analysis and mathematical morphology. Academic Press, New York (1982)

    MATH  Google Scholar 

  8. Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templates. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, p. 193. IEEE Computer Society, Los Alamitos (1997)

    Chapter  Google Scholar 

  9. Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 780–785 (1997)

    Article  Google Scholar 

  10. Stauffer, C., Grimson, E.: Adaptive background mixture models for real-time tracking. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 246–252 (1999)

    Google Scholar 

  11. Stauffer, C., Grimson, E.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22, 747–757 (2000)

    Article  Google Scholar 

  12. Power, P., Schoonees, J.: Understanding background mixture models for foreground segmentation. In: Proc. Images and Vision Computing, Auckland, NZ (2002)

    Google Scholar 

  13. Matheron, G.: Eléments pour une théorie des milieux poreux. Masson, Paris (1967)

    Google Scholar 

  14. Maragos, P.: Pattern spectrum and multiscale shape representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 701–716 (1989)

    Article  MATH  Google Scholar 

  15. Bagdanov, A., Worring, M.: Granulometric analysis of document images. In: Proceedings of the International Conference on Pattern Recognition, vol. I, pp. 478–481. IEEE, Los Alamitos (2002)

    Google Scholar 

  16. Van Droogenbroeck, M.: Algorithms for openings of binary and label images with rectangular structuring elements. In: Talbot, H., Beare, R. (eds.) Mathematical morphology, pp. 197–207. CSIRO Publishing, Sydney (2002)

    Google Scholar 

  17. Hadwiger, H.: Vorlesungen über inhalt, oberfläche and isoperimetric. Springer, Heidelberg (1957)

    Google Scholar 

  18. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learning Journal (to appear, 2006), Available for download at: http://www.montefiore.ulg.ac.be/services/stochastic/pubs/2006/GEW06a/

  19. Marée, R., Geurts, P., Piater, J., Wehenkel, L.: Random subwindows for robust image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, San Diego (CA, USA), vol. 1, pp. 34–40 (2005)

    Google Scholar 

  20. Breiman, L.: Bagging predictors. Machine Learning 26, 123–140 (1996)

    Google Scholar 

  21. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  22. Nene, S., Nayar, S., Murase, H.: Columbia object image library: Coil-100. Technical report (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barnich, O., Jodogne, S., Van Droogenbroeck, M. (2006). Robust Analysis of Silhouettes by Morphological Size Distributions. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_67

Download citation

  • DOI: https://doi.org/10.1007/11864349_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44630-9

  • Online ISBN: 978-3-540-44632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics