Skip to main content

3D Face Recognition Based on Non-iterative Registration and Single B-Spline Patch Modelling Techniques

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4179))

  • 846 Accesses

Abstract

This paper presents a new approach to automatic 3D face recognition using a model-based approach. This work uses real 3D dense point cloud data acquired with a scanner using a stereo photogrammetry technique. Since the point clouds are in varied orientations, by applying a non-iterative registration method, we automatically transform each point cloud to a canonical position. Unlike the iterative ICP algorithm, our non-iterative registration process is scale invariant. An efficient B-spline surface-fitting technique is developed to represent 3D faces in a way that allows efficient surface comparison. This is based on a novel knot vector standardisation algorithm which allow a single BSpline surface to be fitted onto a complex object represented as a unstructured points cloud. Consequently, dense correspondences across objects are established. Several experiments have been conducted and 91% recognition rate can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, Y., Shim, J.: Curvature-based Human Face Recognition Using Depth-weighted Hausdorff Distance. In: International Conference on Image Processing (ICIP), pp. 1429–1432 (2004)

    Google Scholar 

  2. Lu, X., Colbry, A., Jain, K.: Matching 2.5D Scans for Face Recognition. In: International Conference on Pattern Recognition (ICPR), pp. 362–366 (2004)

    Google Scholar 

  3. Bowyer, K., Chang, K., Flynn, P.: A Survey of Approches and Challenges in 3D and Multi-modal 3D+2D Face Recognition. Computer Vision and Image Understanding 101, 1–15 (2006)

    Article  Google Scholar 

  4. Campbell, R., Flynn, P.: A Survey of Free-form Object Representation and Recognition Techniques. Computer Vision and Image Understanding 81, 166–210 (2001)

    Article  MATH  Google Scholar 

  5. Besl, P.J., McKay, N.D.: A Method for Registration of 3D Shapes. IEEE Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  6. Medioni, G., Waupotitsch, R.: Face Recognition and Modelling in 3D. In: IEEE International Workshop on Analysis and Modelling of Faces and Gestures (AMFG), pp. 232–233 (2003)

    Google Scholar 

  7. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image and Vision Computing 10(3), 145–155 (1992)

    Article  Google Scholar 

  8. Zhang, Z.: Iterative Point Matching for Registration of Free-form Curves and Surfaces. International Journal of Computer Vision 13(2), 119–152 (1994)

    Article  Google Scholar 

  9. Fusiello, A., Castellani, U., Ronchetti, L., Murino, V.: Model Acquisition by Registration of Multiple Acoustic Range Views. In: Computer Vision, ECCV 2002, pp. 805–819. Springer, Heidelberg (2002)

    Google Scholar 

  10. Godin, G., Rioux, M., Baribeau, R.: Three-dimensional Registration Using Range and Intensity Information. In: SPIE, Videometrics III, vol. 2350, pp. 279–290 (1994)

    Google Scholar 

  11. Godin, G., Boulanger, P.: Range Image Registration Through Viewpoint Invariant Computation of Curvature. In: IAPRS, vol. 30(5/W1), pp. 70–175 (1995)

    Google Scholar 

  12. Godin, G., Laurendeau, D., Bergevin, R.: A Method for the Registration of Attributed Range images. In: International Conference on 3D Imaging and Modeling, Quebec, pp. 179–186 (2001)

    Google Scholar 

  13. Campbell, R., Flynn, P.: A Survey of Free-form Object Representation and Recognition Techniques. Computer Vision and Image Understanding 81, 166–210 (2001)

    Article  MATH  Google Scholar 

  14. Flusser, J., Zitova, B.: Image Registration Methods: A Survey. Image and Vision Computing 21, 977–1000 (2003)

    Article  Google Scholar 

  15. Eck, M., Hoppe, H.: Automatic Reconstruction of B-Spine Surfaces of Arbitrary Topological Type. In: Proc. 23rd Int’l. Conf. on Computer Graphics and Interactive Techniques SIGGRAPH 1996, pp. 325–334. ACM, New York (1996)

    Chapter  Google Scholar 

  16. Krishnamurthy, V., Levoy, M.: Fitting Smooth Surfaces to Dense Polygon Meshes. ACM-0-89791-746-4/96/008 (1996)

    Google Scholar 

  17. Sarkar, B., Menq, C.: Parameter Optimization in Approximating Curves and Surfaces to Measurement Data. Computer Aided Geometric Design 8, 267–290 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Forsey, D., Bartels, R.: Surface Fitting with Hierarchical splines. ACM Transactions on Graphics 14(2), 134–161 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, Y., Bai, L. (2006). 3D Face Recognition Based on Non-iterative Registration and Single B-Spline Patch Modelling Techniques. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_72

Download citation

  • DOI: https://doi.org/10.1007/11864349_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44630-9

  • Online ISBN: 978-3-540-44632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics