Skip to main content

Detection of Pathological Cells in Phase Contrast Cytological Images

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4179))

  • 853 Accesses

Abstract

This paper presents a practical combination of image processing and pattern recognition techniques in order to identify pathological and atypical cells in phase contrast cytological images. The algorithms involved in the processing cover: oriented edge detection, ridge following, contour grouping and ellipse fitting. The Hough Transform and other techniques are discussed for comparison. Various pattern recognition techniques are tested and compared. All the exploited algorithms were customized to reflect specificity of phase contrast images and apriori–knowledge of cytological smear. Possible applications of this algorithm for automated screening systems are enumerated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Koss, L.G.: The papanicolaou test for cervical cancer detection: A triumph and a tragedy. J. Amer. Med. Assoc., 737–743 (1996)

    Google Scholar 

  2. Glab, G., Florczak, K., Jaronski, J., Licznerski, T.: Gynecological cyto–diagnosis in phase contrast microscopy (in Polish). Blackhorse Publ., Warszawa (2001)

    Google Scholar 

  3. Wright, T.C., Kurman, G.J., Ferenczy, A.: Cervical intraepithelial neoplasia. Patology of the Female Genital Tract (1994)

    Google Scholar 

  4. Ross, K.F.A.: Phase contrast and interference microscopy for cell biologists. Edward Arnold Publ., London (1967)

    Google Scholar 

  5. Duda, R.O., Hart, P.E.: Use of the Hough Transform to detect lines and curves in pictures. Communications of the ACM 15, 11–15 (1972)

    Article  Google Scholar 

  6. Atiquzzaman, M.: Coarse–to–fine search technique to detect circles in images. Int. Journal of Advanced Manufacture Technologies 15, 96–102 (1999)

    Article  Google Scholar 

  7. Guil, N., Zapata, E.L.: Low order circle and ellipse hough transform. J. Pattern Recognition 30, 1729–1744 (1997)

    Article  Google Scholar 

  8. Atherton, T.J., Kerbyson, D.J.: Size invariant circle detection. Image and Vision computing 17, 795–803 (1999)

    Article  Google Scholar 

  9. Smereka, M.: Nuclei recognition in phase contrast microscopy images. In: Proc. of the 3rd Int. Conf. on Computer Recognition Systems, KOSYR 2003, pp. 35–40 (2003)

    Google Scholar 

  10. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Processing 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  11. Ray, N., Acton, S.T., Ley, K.F.: Tracking leukocytes in vivo with shape and size constrained active contours. IEEE Trans. Med. Imag (Special Issue on Image Analysis in Drug Discovery and Clinical Trials) 21, 1222–1235 (2002)

    Google Scholar 

  12. Peura, M., Iivarinen, J.: Image segmentation using a dynamic thresholding pyramid. Aspects of Visual Form, 443–451 (1997)

    Google Scholar 

  13. Rosin, P.L.: Measuring shape: Ellipticity, rectangularity, and triangularity. In: Proc. ICPR 2000, pp. 1952–1955 (2000)

    Google Scholar 

  14. Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. on Pattern Analysis and Machine Inteligence 21, 477–480 (1999)

    Google Scholar 

  15. Rosin, P.: Assessing error of fit functions for ellipses. Graphical models and image processing: GMIP 58, 494–502 (1996)

    Article  Google Scholar 

  16. Shashua, A., Ullman, S.: Grouping contours by iterated pairing network. Neural Info. 3, 335–341 (1991)

    Google Scholar 

  17. Zhu, Q., Payne, M., Riordan, V.: Edge linking by a directional potential functions (dpf). Image and Vision Computing 14, 59–70 (1996)

    Article  Google Scholar 

  18. Elder, J.H., Zucker, S.W.: Computing contour closure. In: ECCV, vol. 1, pp. 399–412 (1996)

    Google Scholar 

  19. Smereka, M.: Detection of elliptical shapes using contour grouping. In: Proc. of the 4th Int. Conf. on Computer Recognition Systems, CORES 2005, pp. 443–450 (2005)

    Google Scholar 

  20. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  21. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Proc. of the 11th Conf. on Uncertainty in Artificial Intelligence, pp. 338–345 (1995)

    Google Scholar 

  22. Cessie, S., van Houwelingen, J.C.: Ridge estimators in logistic regression. Applied Statistics 41, 191–201 (1992)

    Article  MATH  Google Scholar 

  23. Landwehr, N., Hall, M., Frank, E.: Logistic model trees. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS, vol. 2837, pp. 241–252. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the theory of neural computation. Addison-Wesley Publ., Reading (1991)

    Google Scholar 

  25. Aha, D., Kibler, D.: Instance–based learning algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  26. Cleary, J.G., Trigg, L.E.: K: An instance–based learner using an entropic distance measure. In: Proc. of the 12th Int. Conf. on Machine learning, pp. 108–114 (1995)

    Google Scholar 

  27. Demiroz, G., Guvenir, A.: Classification by voting feature intervals. In: ECML (1997)

    Google Scholar 

  28. Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Proc. of the 16th Int. Conf. on Machine Learning, pp. 124–133 (1999)

    Google Scholar 

  29. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  30. Kohavi, R.: Scaling up the accuracy of naive–Bayes classifiers: a decision tree hybrid. In: Proc. of the 2nd Int. Conf. on Knowledge Discovery and Data Mining, pp. 202–207 (1996)

    Google Scholar 

  31. Cohen, W.W.: Fast effective rule induction. In: Proc. of the 12th Int. Conf. on Machine Learning, pp. 115–123 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smereka, M., Glab, G. (2006). Detection of Pathological Cells in Phase Contrast Cytological Images. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_75

Download citation

  • DOI: https://doi.org/10.1007/11864349_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44630-9

  • Online ISBN: 978-3-540-44632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics