Skip to main content

Greyscale Image Interpolation Using Mathematical Morphology

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2006)

Abstract

When magnifying a bitmapped image, we want to increase the number of pixels it covers, allowing for finer details in the image, which are not visible in the original image. Simple interpolation techniques are not suitable because they introduce jagged edges, also called “jaggies”.

Earlier we proposed the “mmint” magnification method (for integer scaling factors), which avoids jaggies. It is based on mathematical morphology. The algorithm detects jaggies in magnified binary images (using pixel replication) and removes them, making the edges smoother. This is done by replacing the value of specific pixels.

In this paper, we extend the binary mmint to greyscale images. The pixels are locally binarized so that the same morphological techniques can be applied as for mmint. We take care of the more difficult replacement of pixel values, because several grey values can be part of a jaggy. We then discuss the visual results of the new greyscale method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lehmann, T., Gönner, C., Spitzer, K.: Survey: Interpolations Methods In Medical Image Processing. IEEE Transactions on Medical Imaging 18, 1049–1075 (1999)

    Article  Google Scholar 

  2. Allebach, J., Wong, P.: Edge-directed interpolation. In: Proceedings of the IEEE International Conference on Image Processing ICIP 1996, Lausanne, Switzerland, vol. 3, pp. 707–710 (1996)

    Google Scholar 

  3. Li, X., Orchard, M.: New Edge-Directed Interpolation. IEEE Transactions on Image Processing 10, 1521–1527 (2001)

    Article  Google Scholar 

  4. Muresan, D., Parks, T.: Adaptively quadratic (AQua) image interpolation. IEEE Transactions on Image Processing 13, 690–698 (2004)

    Article  Google Scholar 

  5. Tschumperlé, D.: PDE’s Based Regularization of Multivalued Images and Applications. PhD thesis, Université de Nice — Sophia Antipolis, Nice, France (2002)

    Google Scholar 

  6. Morse, B., Schwartzwald, D.: Isophote-Based Interpolation. In: Proceedings of the IEEE International Conference on Image Processing ICIP 1998, Chicago, Illinois, USA, pp. 227–231 (1998)

    Google Scholar 

  7. Luong, H., De Smet, P., Philips, W.: Image Interpolation using Constrained Adaptive Contrast Enhancement Techniques. In: Proceedings of the IEEE International Conference on Image Processing ICIP 2005, Genova, Italy, pp. 998–1001 (2005)

    Google Scholar 

  8. Albiol, A., Serra, J.: Morphological Image Enlargements. Journal of Visual Communication and Image Representation 8, 367–383 (1997)

    Article  Google Scholar 

  9. Honda, H., Haseyama, M., Kitajima, H.: Fractal Interpolation for Natural Images. In: Proceedings of the IEEE International Conference on Image Processing ICIP 1999, Kobe, Japan, vol. 3, pp. 657–661 (1999)

    Google Scholar 

  10. Stepin, M.: hq3x Magnification Filter (2003), http://www.hiend3d.com/hq3x.html

  11. Freeman, W., Jones, T., Pasztor, E.: Example-Based Super-Resolution. IEEE Computer Graphics and Applications 22, 56–65 (2002)

    Article  Google Scholar 

  12. Ledda, A., Luong, H., Philips, W., De Witte, V., Kerre, E.: Image Interpolation using Mathematical Morphology. In: Proceedings of 2nd IEEE International Conference on Document Image Analysis for Libraries (DIAL 2006), Lyon, France, pp. 358–367 (2006)

    Google Scholar 

  13. Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, New York (1982)

    MATH  Google Scholar 

  14. Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  15. Haralick, R., Shapiro, L.: Computer and Robot Vision, vol. 1. Addison-Wesley, Reading (1992)

    Google Scholar 

  16. Ronse, C.: A Lattice-Theoretical Morphological View on Template Extraction in Images. Journal of Visual Communication and Image Representation 7, 273–295 (1996)

    Article  Google Scholar 

  17. Ledda, A., Philips, W.: Majority Ordering for Colour Mathematical Morphology. In: Proceedings of the XIIIth European Signal Processing Conference, Antalya, Turkey (2005)

    Google Scholar 

  18. Ledda, A., Philips, W.: Majority Ordering and the Morphological Pattern Spectrum. In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) ACIVS 2005. LNCS, vol. 3708, pp. 356–363. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ledda, A., Luong, H.Q., Philips, W., De Witte, V., Kerre, E.E. (2006). Greyscale Image Interpolation Using Mathematical Morphology. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_8

Download citation

  • DOI: https://doi.org/10.1007/11864349_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44630-9

  • Online ISBN: 978-3-540-44632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics