Skip to main content

Toward Visually Inferring the Underlying Causal Mechanism in a Traffic-Light-Controlled Crossroads

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4179))

  • 855 Accesses

Abstract

The analysis of the events taking place in a crossroads offers the opportunity to avoid harmful situations and the potential to increase traffic efficiency in modern urban areas. This paper presents an automatic visual system that reasons about the moving vehicles being observed and extracts high-level information, useful for traffic monitoring and detection of unusual activity. Initially, moving objects are detected using an adaptive background image model. Then, the vehicles are tracked down by an iterative method where the features being tracked are updated frame by frame. Next, paths are packed into routes using a similarity measure and a sequential clustering algorithm. Finally, the crossroads activity is organized into states representing the underlying mechanism that causes the type of motion being detected. We present the experimental evidence that suggests that the framework may prove to be useful as a tool to monitor traffic-light-controlled crossroads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baofeng, G., Kin-Man, L., Kwan-Ho, L., Wan-Chin, S.: Human Face Recognition based on Spatially Weighted Hausdorff Distance. Pattern Recognition Letters 24(1-3), 499–507 (2003)

    Article  Google Scholar 

  2. Coifman, B., Beymer, D., McLauchlan, P., Malik, J.: A Real-Time Computer Vision System for Vehicle Tracking and Traffic Surveillance. Transportation Research 6(4), 271–288 (1998)

    Article  Google Scholar 

  3. Collins, R.T., Lipton, A.J., Kanade, T.: Introduction to the Special Section on Video Surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 745–746 (2000)

    Article  Google Scholar 

  4. Dailey, D.J., Cathey, F.W., Pumrin, S.: An Algorithm to Estimate Mean Traffic Speed using Uncalibrated Cameras. IEEE Transactions on Intelligent Transportation Systems 1(2), 98–107 (2000)

    Article  Google Scholar 

  5. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and Foreground Modeling using Nonparametric Kernel Density Estimation for Visual Surveillance. Proceedings of the IEEE 90(7), 1151–1163 (2002)

    Article  Google Scholar 

  6. Foresti, G.L., Pani, B.: Monitoring Motorway Infrastructures for Detection of Dangerous Events. In: International Conference on Image Analysis and Processing, pp. 1144–1147 (1999)

    Google Scholar 

  7. Gupte, S., Masoud, O., Martin, R.F.K., Papanikolopoulos, N.P.: Detection and Classification of Vehicles. IEEE Transactions on Intelligent Transportation Systems 3(1), 37–47 (2002)

    Article  Google Scholar 

  8. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing Images using the Hausdorff Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(9), 850–863 (1993)

    Article  Google Scholar 

  9. Huttenlocher, D.P., Kedem, K., Sharir, M.: The Upper Envelope of Voronoi Surfaces and its Applications. In: Annual Symposium on Computational Geometry, pp. 194–203 (1991)

    Google Scholar 

  10. Junejo, I., Javed, O., Shah, M.: Multi feature path modeling for video surveillance. In: IEEE International Conference on Pattern Recognition, vol. 2, pp. 716–719 (2004)

    Google Scholar 

  11. Lou, J., Liu, Q., Tan, T., Hu, W.: Semantic Interpretation of Object Activities in a Surveillance System. In: IEEE International Conference on Pattern Recognition, vol. 3, pp. 777–780 (2002)

    Google Scholar 

  12. Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)

    Google Scholar 

  13. Makris, D., Ellis, T.: Path Detection in Video Surveillance. Image and Vision Computing Journal 20(12), 895–903 (2002)

    Article  Google Scholar 

  14. Masoud, O., Papanikolopoulos, N.P., Kwon, E.: The Use of Computer Vision in Monitoring Weaving Sections. IEEE Transactions on Intelligent Transportation Systems 2(1), 18–25 (2001)

    Article  Google Scholar 

  15. Mussone, L., Sala, G.: An Analysis of Lateral Support Systems to Increase Safety at Crossroads. In: IEEE Intelligent Vehicles Symposium, pp. 383–388 (2003)

    Google Scholar 

  16. Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian Computer Vision System for Modeling Human Interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 831–843 (2000)

    Article  Google Scholar 

  17. Rigoll, G., Eickeler, S., Muller, S.: Person tracking in real-world scenarios using statistical methods. In: Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 207–213 (2000)

    Google Scholar 

  18. Salas, J., Martínez, P., González, J.: Background Updating with the Use of Intrinsic Curves. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 731–742. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Seki, M., Fujiwara, H., Sumi, K.: A robust background subtraction method for changing background. In: WACV 2000, pp. 207–213 (2000)

    Google Scholar 

  20. Stauffer, C., Grimson, W.E.L.: Adaptative Background Mixture Models for Real-Time Tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 246–252 (1999)

    Google Scholar 

  21. Theodoris, S., Koutroumbas, K.: Pattern Recognition. Academic Press, London (1999)

    Google Scholar 

  22. Tomasi, C., Manduchi, R.: Stereo matching as a nearest-neighbor problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 333–340 (1998)

    Article  Google Scholar 

  23. Tomasi, C., Shi, J.: Good Features to Track. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)

    Google Scholar 

  24. Wada, T., Matsuyama, T.: Multiobject Behavior Recognition by Event Driven Selective Attention Method. Pattern Analysis and Machine Intelligence 22(8), 873–887 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salas, J., Canchola, S., Martínez, P., Jiménez, H., Pless, R.C. (2006). Toward Visually Inferring the Underlying Causal Mechanism in a Traffic-Light-Controlled Crossroads. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_87

Download citation

  • DOI: https://doi.org/10.1007/11864349_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44630-9

  • Online ISBN: 978-3-540-44632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics