Abstract
For nonseparable bidimensional wavelet transforms, the choice of the dilation matrix is all–important, since it governs the downsampling and upsampling steps, determines the cosets that give the positions of the filters, and defines the elementary set that gives a tesselation of the plane. We introduce nonseparable bidimensional wavelets, and give formulae for the analysis and synthesis of images. We analyze several dilation matrices, and show how the wavelet transform operates visually. We also show some distorsions produced by some of these matrices. We show that the requirement of their eigenvalues being greater than 1 in absolute value is not enough to guarantee their suitability for image processing applications, and discuss other conditions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Skodras, A., Christopoulos, C., Ebrahimi, T.: Jpeg2000: The upcoming still image compression standard. Elsevier, Pattern Recognition Letters 22, 1337–1345 (2001)
Cohen, A., Daubechies, I.: Non-separable bidimensional wavelet bases. Revista Matematica Iberoamericana 9, 51–137 (1993)
Karoui, A., Vaillancourt, R.: Nonseparable biorthogonal wavelet bases of \(L^2(\Re ^n)\). CRM Proceedings and Lecture Notes American Math. Society 18, 135–151 (1999)
Kovacevic, J., Vetterli, M.: Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for R n. IEEE Trans. Inf. Theor. 38, 533–555 (1992)
Cabrelli, C., Heil, C., Molter, U.: Accuracy of lattice translates of several multidimensional refinable functions. J. of Approximation Theory 95, 5–52 (1998)
Cabrelli, C., Heil, C., Molter, U.: Polynomial Reproduction by Refinable Functions. Ka-Sing Lau (1999)
Ruedin, A.M.C.: Construction of nonseparable multiwavelets for nonlinear image compression. Eurasip. J. of Applied Signal Proc. 2002(1), 73–79 (2002)
Heil, C., Colella, D.: Dilation Equations and the Smoothness of Compactly Supported Wavelets. In: Benedetto, J., Frazier, M. (eds.), CRC Press, Boca Raton (1994)
Ayache, A.: Construction of non-separable dyadic compactly supported orthonormal wavelet bases L 2(R 2) of arbitrarily high regularity. Revista Mat. Iberoamericana 15, 37–58 (1999)
Kovacevic, J., Vetterli, M.: New results on multidimensional filter banks and wavelets. In: Proc. IEEE Int. Symposium on Circuits and Systems (1993)
He, W., Lai, W.: Examples of bivariate non-separable continuous compactly supported orthonormal wavelets. IEEE Trans. on Image Processing 9, 949–953 (2000)
Faugère, J.C., de Saint-Martin, F.M., Rouillier, F.: Design of regular nonseparable bidimensional wavelets using grobner basis techniques. IEEE Trans. on Signal Processing 46, 845–856 (1998)
Belogay, E., Wang, Y.: Arbitrarily smooth orthogonal nonseparable wavelets in R 2. SIAM J. Math. Anal. 30, 678–697 (1999)
Ruedin, A.: Nonseparable orthogonal multiwavelets with 2 and 3 vanishing moments on the quincunx grid. In: Proc. SPIE Wavelet Appl. Signal Image Proc. VII, vol. 3813, pp. 455–466 (1999)
Ruedin, A.M.C.: Balanced nonseparable orthogonal multiwavelets with two and three vanishing moments on the quincunx grid. In: Wavelet Appl. Signal Image Proc. VIII, Proc. SPIE, vol. 4119, pp. 519–527 (2000)
Entezari, A., Moller, T., Vaisey, J.: Subsampling matrices for wavelet decompositions on body centered cubic lattices. IEEE Sign. Proc. Lett. 11, 733–735 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ruedin, A. (2006). Dilation Matrices for Nonseparable Bidimensional Wavelets. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_9
Download citation
DOI: https://doi.org/10.1007/11864349_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44630-9
Online ISBN: 978-3-540-44632-3
eBook Packages: Computer ScienceComputer Science (R0)