Skip to main content

Visibility of Point Clouds and Mapping of Unknown Environments

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4179))

Abstract

We present an algorithm for interpolating the visible portions of a point cloud that are sampled from opaque objects in the environment. Our algorithm projects point clouds onto a sphere centered at the observing locations and performs essentially non-oscillatory (ENO) interpolation to the projected data. Curvatures of the occluding objects can be approximated and used in many ways. We show how this algorithm can be incorporated into novel algorithms for mapping an unknown environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atle, A., Engquist, B.: On surface radiation conditions for high frequency wave scattering (preprint, 2006)

    Google Scholar 

  2. Bruno, O., Geuzaine, C.A., Monro Jr., J.A., Reitich, F.: Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case. Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 1816, 629–645 (2004)

    Article  MathSciNet  Google Scholar 

  3. Chin, W.-P., Ntafos, S.: Shortest watchman routes in simple polygons. Discrete Comput. Geom. 6, 9–31 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ghomi, M.: Shadows and convexity of surfaces. Annals of Mathematics 155, 281–293 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Goodman, J.E., O’Rourke, J. (eds.): Handbook of discrete and computational geometry, 2nd edn. CRC Press LLC, Boca Raton (2004)

    MATH  Google Scholar 

  6. Guilamo, L., Tovar, B., LaValle, S.M.: Pursuit–evasion in an unknown environment using gap navigation graphs. In: IEEE International Conference on Robotics and Automation (2004) (under review)

    Google Scholar 

  7. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially nonoscillatory schemes, III. Journal of Computational Physics 71, 231–303 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jin, H., Yezzi, A., Tsai, H.-H., Cheng, L.T., Soatto, S.: Estimation of 3D surface shape and smooth radiance from 2D images; a level set approach. Journal of Scientific Computing 19, 267–292 (to appear, 2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. LaValle, S.M., Hinrichsen, J.: Visibility based pursuit-evasion: An extension to curved environments. In: Proc. IEEE International Conference on Robotics and Automation, pp. 1677–1682 (1999)

    Google Scholar 

  10. Levoy, M.: The Digital Michelangelo Project

    Google Scholar 

  11. Murray, D., Jennings, C.: Stereo vision based mapping for a mobile robot. In: Proc. IEEE Conf. on Robotics and Automation (1997)

    Google Scholar 

  12. Rusinkiewicz, S., Levoy, M.: QSplat: A multiresolution point rendering system for large meshes. In: SIGGRAPH, pp. 343–352 (2000)

    Google Scholar 

  13. Sachs, S., Rajko, S., LaValle, S.M.: Visibility based pursuit-evasion in an unknown planar environment. International Journal of Robotics Research (to appear, 2003)

    Google Scholar 

  14. Tovar, B., LaValle, S.M., Murrieta, R.: Locally-optimal navigation in multiply-connected environments without geometric maps. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2003)

    Google Scholar 

  15. Tovar, B., LaValle, S.M., Murrieta, R.: Optimal navigation and object finding without geometric maps or localization. In: Proc. IEEE/RSJ International Conference on Robotics and Automation (2003)

    Google Scholar 

  16. Tsai, Y.-H.R., Cheng, L.-T., Osher, S., Burchard, P., Sapiro, G.: Visibility and its dynamics in a PDE based implicit framework. Journal of Computational Physics 199, 260–290 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tsai, Y.-H.R., Cheng, L.-T., Osher, S., Zhao, H.-K.: Fast sweeping methods for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41(2), 673–694 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Urrutia, J.: Art gallery and illumination problems. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 973–1027 (2000)

    Google Scholar 

  19. Wolf, D.F., Howard, A., Sukhatme, G.S.: Towards Geometric 3D Mapping of Outdoor Environments Using Mobile Robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1258–1263 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Landa, Y., Tsai, R., Cheng, LT. (2006). Visibility of Point Clouds and Mapping of Unknown Environments. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_92

Download citation

  • DOI: https://doi.org/10.1007/11864349_92

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44630-9

  • Online ISBN: 978-3-540-44632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics