Skip to main content

On the Expressiveness of MTL with Past Operators

  • Conference paper
Formal Modeling and Analysis of Timed Systems (FORMATS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4202))

Abstract

We compare the expressiveness of variants of Metric Temporal Logic (MTL) obtained by adding the past operators ‘S’ and ‘S I ’. We consider these variants under the “pointwise” and “continuous” interpretations over both finite and infinite models. Among other results, we show that for each of these variants the continuous version is strictly more expressive than the pointwise version. We also prove a counter-freeness result for MTL which helps to carry over some results from [3] for the case of infinite models to the case of finite models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Feder, T., Henzinger, T.A.: The Benefits of Relaxing Punctuality. Journal of the ACM 43(1), 116–146 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alur, R., Henzinger, T.A.: Real-time Logics: Complexity and Expressiveness. In: LICS, pp. 390–401. IEEE Computer Society, Los Alamitos (1990)

    Google Scholar 

  3. Bouyer, P., Chevalier, F., Markey, N.: On the Expressiveness of TPTL and MTL. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. D’Souza, D., Prabhakar, P.: On the expressiveness of MTL in the pointwise and continuous semantics. In: Formal Methods Letters, Software Tools for Technology Transfer (to appear)

    Google Scholar 

  5. Kamp, J.A.W.: Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles, California (1968)

    Google Scholar 

  6. Koymans, R.: Specifying Real-Time Properties with Metric Temporal Logic. Real-Time Systems 2(4), 255–299 (1990)

    Article  Google Scholar 

  7. McNaughton, R., Papert, S.A.: Counter-Free Automata (M.I.T. research monograph no. 65). MIT Press, Cambridge (1971)

    Google Scholar 

  8. Ouaknine, J., Worrell, J.: On the Decidability of Metric Temporal Logic. In: LICS, pp. 188–197. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  9. Ouaknine, J., Worrell, J.: On Metric Temporal Logic and Faulty Turing Machines. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS, vol. 3921, pp. 217–230. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Prabhakar, P., D’Souza, D.: On the expressiveness of MTL with past operators. Technical Report IISc-CSA-TR-2006-5, Indian Institute of Science, Bangalore 560012, India (May 2006), URL: http://archive.csa.iisc.ernet.in/TR/2006/5/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prabhakar, P., D’Souza, D. (2006). On the Expressiveness of MTL with Past Operators. In: Asarin, E., Bouyer, P. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2006. Lecture Notes in Computer Science, vol 4202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867340_23

Download citation

  • DOI: https://doi.org/10.1007/11867340_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45026-9

  • Online ISBN: 978-3-540-45031-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics