
Intersection of regular signal-event (timed) languages

Béatrice Bérard1, Paul Gastin2 and Antoine Petit2

1 LAMSADE, Université Paris Dauphine & CNRS,
Place du Maréchal de Lattre de Tassigny, F-75775 Paris Cedex 16, France

2 LSV, ENS de Cachan & CNRS,
61 av. du Président Wilson, F-94235 Cachan Cedex, France

Abstract. We propose in this paper a construction for a “well known” result:
regular signal-event languages are closed by intersection. In fact, while this result
is indeed trivial for languages defined by Alur and Dill’s timed automata (the
proof is an immediate extension of the one in the untimed case), it turns out
that the construction is much more tricky when considering the most involved
model of signal-event automata. While several constructions have been proposed
in particular cases, it is the first time, up to our knowledge,that a construction
working on finite and infinite signal-event words and taking into account signal
stuttering, unobservability of zero-durationτ -signals and Zeno runs is proposed.

1 Introduction

In order to accept timed words, the model of timed automata was first proposed in [1,
2]. It has been widely studied for the last fifteen years and successfully applied to in-
dustrial cases. For this model, an observation, called a time-event word, may be viewed
as an alternating sequence of waiting times and instantaneous actions. A timed automa-
ton is a finite automaton extended with variables called clocks, designed to recognize
time-event words: time elapses while the control stays in a given node and an event is
observed when a discrete transition occurs.

Another model was introduced by [3], and further studied in [10, 4, 11] with the
aim of describing hardware systems. In this case, an observation is a signal word, i.e.
a sequence of factorsad, wherea is a signal andd is its duration. The original model
of timed automata was then modified to fit this setting: a signal is emitted while the
automaton stays in some state and no event is produced when a discrete transition is
fired. In this framework, when a transition occurs between two states with the same
signala, we obtainad1 followed byad2 , which are merged inad1+d2 . This phenomenon
is called stuttering.

It was noticed in [4] that both approaches are complementaryand can be combined
in an algebraic formalism to obtain the so-called signal-event monoid. Timed automata
can be easily adapted to take both signals and events into account, thus yielding signal-
event automata: states emit signals and transitions produce events.

We consider in this paper both finite and infinite behaviors ofsignal-event automata
and we also include unobservable events (ε-transitions) and hidden signals (τ -labeled
states). These features can be very useful and even necessary, for instance for handling

abstractions [6]. They also allow us to get as special cases the initial models of timed
automata and signal automata.

We study in this paper a construction for the intersection oflanguages accepted by
signal-event automata. Surprisingly, it turns out that this closure property is rather dif-
ficult to obtain. Usually, the construction for intersection relies on a basic synchronized
product. In [1], which deals with infinite time-event words only (no signal is involved),
a Büchi-like product is performed. The situation is more complex for signal words due
to stuttering of signals and unobservability of zero-duration signals. In [3], a construc-
tion is given for the intersection of signal automata, but neither signal stuttering nor
unobservability of zero-duration signal is taken into account, and only finite runs are
considered. Note that the full version [4] of [3] deals with the intersection of usual
timed automata only. In [10], in order to obtain a determinization result, a construction
is proposed to remove stuttering and zero-duration signalson signal automata using a
single clock but intersection is not considered directly. In [11], stuttering is handled
but intersection is done for signal automata acting on finitesequences only and without
zero-duration signals. To cope with stuttering, intermediate states andε-transitions are
added to the automaton, thus introducing all possible ways of splitting some signalad

into a finite concatenationad1 . . . adn . When dealing withω-sequences, this approach
would produce additional Zeno runs leading to another difficulty arising with the pos-
sibility to accept a finite signal-event word of finite duration with either a finite run or
an infinite Zeno run.

We provide a general construction for the intersection of signal-event timed au-
tomata working on finite and infinite signal-event words. We solve the main difficulties
of signal stuttering, unobservability of zero-durationτ -signals and Zeno runs. Note that,
although Zeno behaviours have been studied (see for instance [12, 9]), it has been some-
times argued that excluding Zeno runs directly from the semantics of timed automata
is a realistic assumption, since they do not appear in “real”systems. However, the se-
mantics of timed automata used by model-checking tools likeUPPAAL do include Zeno
runs while performing forward reachability analysis (thiscan be easily checked with an
example). Hence, we think that the general theory should include Zeno runs as well.

We first give in Section 2 precise definitions of finite and infinite signal-event lan-
guages, with the corresponding notion of signal-event automata. Section 3 establishes a
normal form for signal-event automata so that no infinite runaccepts a finite word with
finite duration and no finite run accepts a word with infinite duration. This normal form
is useful for the general construction of intersection of signal-event automata dealing
both with signal stuttering and with finite and infinite sequences proposed in Section 4.

For lack of space, this paper does not contain the proofs of the correctness of the
different automata constructions we propose. These proofsare available in the technical
report [7].

2 Signal-event words and signal-event automata

Let Z be any set. We writeZ∗ (respectivelyZω) the set of finite (respectively infinite)
sequences of elements inZ, with ε for the empty sequence, andZ∞ = Z∗ ∪ Zω the

set of all sequences of elements inZ. The setZ∞ is equipped with the usual partial
concatenation defined fromZ∗ × Z∞ to Z∞.

Throughout this paper, we consider a time domainT which can be either the set
N of natural numbers, the setQ+ of non-negative rational numbers or the setR+ of
non-negative real numbers and we setT = T ∪ {∞}.

2.1 Signal-event words

We now describe the most general class of systems where both piecewise-constant sig-
nals and discrete events can occur, based on the signal-event monoid defined in [4]. We
consider two finite alphabetsΣe andΣs, with Σ = Σe ∪ (Σs ×T): an element inΣe is
the label of an instantaneous event, while a pair(a, d) ∈ Σs ×T, writtenad, associates
a durationd with a signala. Moreover,Σs includes the special symbolτ for an internal
(or hidden) signal, the purpose of which is to represent a situation where no signal can
be observed.

Intuitively, signal-event words(SE-words for short and sometimes calledtimed
words) correspond to sequences obtained fromΣ∞ by merging consecutive identical
signals and removing internalτ -signals with duration0. But note that signals different
from τ may have a null duration.

Formally, the partial monoid of signal-event words is the quotientΣ∞/ ≈ where≈
is the congruence (with respect to the partial concatenation onΣ∞) generated by

{

τ0 ≈ ε and
∏

i∈I adi ≈
∏

j∈J ad′

j if
∑

i∈I di =
∑

j∈J d′j

where the index setsI andJ above may be infinite. The partial monoidΣ∞/ ≈ will be
denotedSE (Σ, T) or simplySE (Σ) or SE when there is no ambiguity. We writea∞

for the equivalence class of any sequence of the form
∏

i≥1
adi , where

∑

i≥1
di = ∞.

Note that for two words of the formsuad andad′

v with d < ∞, the concatenation is
uad+d′

v.
A finite or infinite sequence inΣ∞ ∪ Σ∗ · (Σs × {∞}) which does not containτ0

and such that two consecutive signals are distinct is said tobe in normal form(NF).
SE-words are often identified with sequences in normal form.A SE -word isfinite if its
normal form is a finite sequence (even if it ends witha∞).

A duration can be associated with each element ofΣ by: ‖a‖ = 0 if a ∈ Σe and
‖ad‖ = d if a ∈ Σs andd ∈ T, so that the duration of a sequencew = s1s2 · · · in Σ∞

is ‖w‖ =
∑

i≥1
‖si‖ ∈ T. Note that the duration restricted to finiteSE -words with

finite durations is a morphism fromΣ∗ into (T, +). A Zenoword is aSE -word with
finite duration and whose normal form is infinite. Asignal-event language(or timed
language) is a set ofSE -words.

Example 1.Let Σe = {f, g} andΣs = {a, b}. TheSE -word w = a3ffgτ4.5a1b5

can be viewed as the following sequence of observations: first, the signala during3
time units, then a sequence of three instantaneous eventsffg, then some unobservable
signal during4.5 time units, again the signala during1 time unit and then the signalb
during5 time units. The total duration ofw is 13.5. For infiniteSE -words, we have for

instance:a3gfa1
∏

i≥1
a2 ≈ a1a2gf

∏

i≥1
a4 and the normal form is writtena3gfa∞.

Note also that an infinite timed sequence inΣω may be a finiteSE -word with finite
duration:

∏

i≥0
a1/2

i

≈ a2.

2.2 Signal-event (timed) automata

Our model ofsignal-event automata(also calledtimed automatain the sequel) is a
variant of the basic models proposed in the literature, integrating both instantaneous and
durational semantics: signals are associated with the control states, while instantaneous
events occur when the system switches between two states.

Clocks and guards.Let X be a set of variables with values inT, called clocks. The set
C(X) of guards or clock constraints overX consists of conjunctions of atomic formulas
x ⊲⊳ c, for a clockx, a constantc ∈ T and a binary operator⊲⊳ in {<,≤, =,≥, >}.

A clock valuationv : X → T is a mapping that assigns to each clockx a time value
v(x). The set of all clock valuations isTX . We writev |= g when the clock valuationv
satisfies the clock constraintg. If t is an element ofT andα a subset ofX , the valuations
v + t andv[α] are defined respectively by(v + t)(x) = v(x) + t, for each clockx in X
and(v[α])(x) = 0 if x ∈ α, and(v[α])(x) = v(x) otherwise.

Signal-event (timed) automata.A Büchi signal-event automaton over the time domain
T is a tupleA = (Σe, Σs, X, Q, Q0, F, R, I, ℓ, ∆), whereΣe andΣs are alphabets of
events and signals,X is a finite set ofT-valued clocks,Q is a finite set of control states,
Q0 ⊆ Q is a subset of initial states,F ⊆ Q is a subset of final states andR ⊆ Q
corresponds to a Büchi acceptance condition. The mappingI : Q → C(X) associates
with a stateq ∈ Q an invariant I(q) being a conjunction of constraints of the form
x ⊲⊳ c, with ⊲⊳ ∈ {<,≤}, andℓ : Q → Σs associates a signal with each state.

The set of transitions is∆ ⊆ Q × C(X) × Σe ∪ {ε} × P(X) × Q. A transition,
also writtenq

g,a,α
−−−→ q′, is labeled by a guardg, an instantaneous event inΣe or the

unobservable eventε, and the subsetα of clocks to be reset. Whena = ε, it is called an
ε-transition or a silent transition. Recall that, contrary to the untimed case,ε-transitions
increase the expressive power of timed automata [5].

First examples of signal-event automata are given in Figure1 (where double-circled
nodes correspond to Büchi repeated states). The semanticsof SE -automata will be
given below. But intuitively,

– A SE -word is accepted byA1 if it is of the formad1bd2 with d1 ≥ 1.
– A SE -word is accepted byA2 if it is of the formad1cad2c . . . with di < 1 for any

i.
– Since the concatenation merges consecutive identical signals (ad1ad2 = ad1+d2),

the language accepted byA3 consists of the signala emitted for a durationd ≥ 1.
– A4 accepts the signala emitted for a durationd ≤ 1 (note thata1 is accepted by an

infinite run with successive durations1
2
, 1

4
, 1

8
, . . . for instance).

A1 : p1

a

p2

b

x ≥ 1, ε
A2 : q1

a, y < 1
c, {y}

A3 : p1

a

p2

a

x ≥ 1, ε
A4 : q1

a, y < 1
ε

Fig. 1. Some signal automata.

Semantics.In order to define the semantics ofSE -automata, we recall the notions
of path and timed run through a path. A path inA is a finite or infinite sequence of
consecutive transitions:

P = q0

g1,a1,α1
−−−−−→ q1

g2,a2,α2
−−−−−→ q2 . . . , where(qi−1, gi, ai, αi, qi) ∈ ∆, ∀i > 0

The path is said to beacceptingif it starts in an initial state (q0 ∈ Q0) andeither it is
finite and ends in a final state,or it is infinite and visits infinitely often arepeatedstate
q ∈ R. A run of the automaton through the pathP is a sequence of the form:

〈q0, v0〉
d0−→ 〈q0, v0 + d0〉

a1−→ 〈q1, v1〉
d1−→ 〈q1, v1 + d1〉

a2−→ 〈q2, v2〉 . . .

where

– di ∈ T for i ≥ 0 and if P is finite with n transitions then the last step of the run

must be〈qn, vn〉
dn−→ 〈qn, vn + dn〉, with dn ∈ T,

– (vi)i≥0 are clock valuations such thatv0(x) = 0 for all x ∈ X , and for eachi ≥ 0,
we have







vi + d |= I(qi), ∀d ∈ [0, di]
vi + di |= gi+1

vi+1 = (vi + di)[αi+1]

Note that ifdi is finite, the condition about invariantI(qi) can be replaced simply
by vi + di |= I(qi).

The signal-event (timed) word generated by this run is simply (the equivalence class
of) ℓ(q0)

d0a1ℓ(q1)
d1a2ℓ(q2)

d2 The signal-event (timed) language accepted byA
over the time domainT and the alphabetΣ, writtenL(A), is the set ofSE -words gen-
erated by (finite or infinite) accepting runs ofA. Two automataA andB areequivalent
if L(A) = L(B).

The set of all signal-event (timed) automata is denoted bySEAε and the family of
signal-event (timed) languages generated by some automaton in SEAε is denoted by
SELε.

Remark 1.A Zeno runis an infinite run for which the time sequence defined byti =
∑

j≤i dj for i ≥ 0, is convergent (keeping the notations just above). We did not include
the non Zeno condition for runs, requiring that each infiniteaccepting run has an infinite
duration. Thus, Zeno runs accepting finite words with finite duration may occur. Note
that they also appear in the semantics of model-checking tools like UPPAAL, as can
easily be checked with an example.

3 Normal forms

We propose in this section two technical results on the existence of “normal forms” for
timed runs and signal-event automata. These existences will be crucial for the proof of
the main result in the next section.

Recall that the normal form, obtained by merging consecutive identical signals and
removing factors of the formτ0, contains only visible eventsb in Σe and visible blocks
ad with eitherd > 0 or a 6= τ . The alternating normal form(ANF) of a SE -word
insists on a strict alternation between events and signals at the expense of keeping some
invisible events (ε) and some invisible signals (τ0).

More precisely, a sequencew = ad0

0 b1a
d1

1 b2 · · · overΣ ∪ {ǫ} is in ANF if for all k

we havebk = ε impliesak−1 6= ak anda
dk−1

k−1
6= τ0 6= adk

k .

Example 2.Let Σe = {f, g} andΣs = {a, b}.

– a1fa3ga2.5 is both in ANF and in NF,
– fa3gfa2.5b4 is in NF but not in ANF. Its ANF isτ0fa3gτ0fa2.5εb4,
– τ0fτ0g(a2εb3ε)ω is in ANF but not in NF. Its NF isfg(a2b3)ω.

Note that the ANF of aSE -word is unique. Indeed, assume thatw = ef0

0 c1e
f1

1 c2 · · ·

is also in ANF. Assume thatad0

0 6= ef0

0 . Eithera0 = e0 andd0 < f0 and we must have
b1 = ε. We deduce thata1 6= a0 andad0

0 6= τ0 6= ad1

1 . A contradiction since in this case
w cannot start simultaneously byef0

0 and byad0

0 b1a
d1

1 . Or a0 6= e0 and for instance
a0 = τ 6= e0. Then we must haved0 = 0 andb1 = ε, a contradiction with the ANF.
Hence we havead0

0 = ef0

0 . Assume now thatb1 6= c1. Then for instancec1 6= ε and we
must haveb1 = ε. Once again, this impliesa1 6= a0 andad0

0 6= τ0 6= ad1

1 leading to a
contradiction as above. By induction, this shows that the ANF is unique.

We extend the ANF to runs and paths of aSE -automatonB as follows. Letρ =

〈p0, v0〉
d0−→ 〈p0, v0 + d0〉

b1−→ 〈p1, v1〉
d1−→ · · · be a run for aSE -word w through

some pathP = p0

g1,b1,α1
−−−−−→ p1

g2,b2,α2
−−−−−→ · · · of B. For the sake of simplicity, we

assume thatρ andP are infinite. Our construction is similar whenρ andP are finite.
For0 ≤ i < k ≤ ∞, we defineℓ(i, k) = {ℓ(pj) | i ≤ j < k andℓ(pj)

dj 6= τ0}.
We build inductively the ANF ofρ andP and we simultaneously fix some notation.

We start withj0 = 0. Assume thatjk < ∞ has been defined. Intuitively, from the state
pjk

, we look for the first state where either an eventb 6= ǫ is performed or a different
signal is produced. Formally, we letjk+1 = inf{j > jk | bj 6= ε or |ℓ(jk, j + 1)| =
2} with the conventioninf(∅) = ∞. Let Pk be the subpath ofP starting atpjk

and
ending atpn−1 if n = jk+1 < ∞ and similarly, letρk be the subrun ofρ starting at

〈pjk
, vjk

〉 and ending at〈pn−1, vn−1 + dn−1〉 if n = jk+1 < ∞. Let alsoak = τ if
ℓ(jk, jk+1) = ∅ and{ak} = ℓ(jk, jk+1) otherwise. Finally, letDk =

∑

jk≤j<jk+1
dj .

For jk < j < jk+1 we havebj = ε and forjk ≤ j < jk+1 we have eitherℓ(pj) = ak

or ℓ(pj) = τ anddj = 0. Hence,ρk is a run foraDk

k throughPk.

By construction, we haveP = P0

gj1
,bj1

,αj1−−−−−−−→ P1

gj2
,bj2

,αj2−−−−−−−→ P2 · · · , andρ =

ρ0

bj1−−→ ρ1

bj2−−→ ρ2 · · · which are the ANF ofP andρ respectively. We also havew =
aD0

0 bj1a
D1

1 bj2a
D2

2 · · · and this is the ANF ofw. Indeed, ifbjk
= ε then|ℓ(jk−1, jk +

1)| = 2 hencea
Dk−1

k−1
6= τ0, ℓ(pjk

)djk 6= τ0 and ℓ(pjk
) 6= ak−1. We deduce that

ak = ℓ(pjk
) 6= ak−1 andaDk

k 6= τ0.

A normal form for signal-event automata. We show how to transform a signal-event
automaton into an equivalent one, in which finite accepting runs correspond exactly to
finite words with finite duration. The result is interesting in itself for implementation
issues: when a finite word with finite duration is accepted by an infinite run, we build
instead a finite accepting run for this word. Furthermore, conditions(†) and(‡) below
will be used in the next section for the intersection construction.

Note that the transformation removes a particular type of Zeno runs, those which
contain ultimately onlyε-transitions and a single signal. But it keeps Zeno runs corre-
sponding to infinite words of finite duration.

Theorem 1. LetA be aSE -automaton. We can effectively construct an equivalentSE -
automatonA′ such that:

(†) no infinite run ofA′ accepts a finite word with finite duration, and
(‡) no finite run ofA′ accepts a word with infinite duration.

We start from an automatonA = (Σe, Σs, X, Q, Q0, F, R, I, ℓ, ∆). We first con-
struct an automaton satisfying condition(†). We need to distinguish whether time pro-
gresses infinitely often or not.

First step. We first suppress infinite runs where time does not progress infinitely often.
Such a run generates a word of the formwah with h < ∞ and loops eventually through
some repeated stater. The loop is constituted ofε-transitions and states of labela or τ ,
all crossed instantaneously. The intuitive idea is to detect such a loop and to replace it
by a single transition to a new final state. More formally, forany signala, we build an
automatonA(a, 0) which contains the states and transitions ofA together with some
new states and transitions described below (see Fig. 2 for anintuitive view).

A r
ε, {z} r-copy

of A
ε f

z ≤ 0

ε

Fig. 2. The automatonA(a, 0)

Letz /∈ X be a new clock. The automatonA(a, 0) contains the states and transitions
of A. Moreover, for each(p, g, ε, α, q) ∈ ∆ with {ℓ(p), ℓ(q)} ⊆ {a, τ}, we add the
following states and transitions:

(1)
(p, g, ε, α ∪ {z}, q) if q is a repeated state ofA
(p, g, ε, α, (q, p))
((p, r), g, ε, α, (q, r))

For the new states, we letℓ(r) = ℓ(r), I(r) = I(r), ℓ(p, r) = ℓ(p), I(p, r) = I(p).
These new transitions simulate a loop around some repeated stater: just before reach-
ing r, we move into the copy and reachr instead. We rememberr until reaching(r, r),
where we know that the loop has been successfully completed.Therefore, we also
add the transitions((r, r), ε, f) wheref is a new state which is the only final state
of A(a, 0), with ℓ(f) = τ andI(f) = z ≤ 0. The invariant off ensures that the states
of the formr or (p, q) have been crossed instantaneously.

The automatonA(a, 0) has no repeated states and its initial states are those ofA.

Second step.We now treat the case of Zeno runs where time progresses infinitely often.
As in the first step, the idea is to introduce copies ofA in which we unfold once a loop
around some repeated state to check if it can be taken infinitely often within finite time.
But the construction is much more tricky since timing constraints have to be verified.

Let wad be a finite word with finite duration accepted byA with some infinite
run ρ through some infinite pathP and such that time progresses infinitely often in
ρ. We denote byLf (A, a) the set of such words. LetY be the set of clocks that are
not reset infinitely often inP . For eachy ∈ Y , let my = sup{c | y > c or y ≥
c occurs infinitely often in the guards ofP} with the conventionsup ∅ = 0. Similarly,
for eachy ∈ Y , let My = inf{c | y < c or y ≤ c occurs infinitely often in the guards
or invariants ofP} with the conventioninf ∅ = ∞. Finally, we letm = (my)y∈Y and
M = (My)y∈Y . Note that all transitions(p, g, b, α, q) used infinitely often inP satisfy

(2)

- ℓ(p), ℓ(q) ∈ {a, τ}, b = ε andα ∩ Y = ∅,
- ∀y ∈ Y , if y > c or y ≥ c is a constraint ing thenmy ≥ c,
- ∀y ∈ Y , if y < c or y ≤ c is a constraint ing, I(p) or I(q) thenMy ≤ c,
- ∀x ∈ X \ Y , if x > c or x ≥ c is a constraint ing thenc = 0 .

The last condition holds sincewad has a finite duration.

A r

V

y ≥ my , ε, {z} r-copy

of A

z > 0, ε f
V

y ≤ My

ε, {z}

Fig. 3.The automatonA(a, Y, m, M)

We build an automatonA(a, Y, m, M) depending only on(a, Y, m, M) which ac-
ceptswad with a finite run (note that the number of distinct tuples(a, Y, m, M) is

finite). Let z /∈ X be a new clock. The automatonA(a, Y, m, M) contains the states
and transitions ofA together with some new states and transitions described below (see
Fig. 3 for an intuitive view). It has no repeated states and its initial states are those ofA.
Let (p, g, ε, α, q) ∈ ∆ be a transition ofA satisfying(2). We add the following states
and transitions:

(3)
(p, g ∧

∧

y∈Y y ≥ my, ε, α ∪ {z}, q) if ℓ(q) = a,
(p, g ∧ z > 0, ε, α ∪ {z}, (q, p, α, (q ∈ R))) if ℓ(p) = a,
((p, r, β, ϕ), g, ε, α ∪ {z}, (q, r, α ∪ β, ϕ ∨ (q ∈ R)))

For the new states, we letℓ(r) = a, I(r) = I(r), ℓ(p, r, β, ϕ) = ℓ(p), I(p, r, β, ϕ) =
I(p) if ℓ(p) = a andI(p, r, β, ϕ) = I(p) ∧ z ≤ 0 otherwise. These new transitions
simulate a loop around some repeated stater: just before reachingr, we move into the
copy and reachr instead, while satisfying the lower constraints. We remember r until
reaching(r, r, X \ Y, true), where we know that the loop has successfully terminated
because we crossed some repeated state ((q ∈ R)). Therefore, we also add the tran-
sitions((r, r, X \ Y, true), true, ε, {z}, f) wheref is a new state which is the only
final state ofA(a, Y, m, M) and withℓ(f) = a andI(f) =

∧

y∈Y y ≤ My (with the
convention thaty ≤ ∞ is true).

Third step. The resulting automatonA1 is the disjoint union of all automataA(a, 0)
andA(a, Y, m, M). All finite words with finite duration accepted byA can be accepted
by finite runs ofA1 andL(A1) ⊆ L(A). To obtain an equivalentSE -automatonA2

satisfying the condition(†), it remains to keep only the infinite runs ofA which accept
words with either an infinite duration or an infinite length. For this, we define an au-
tomatonB which goes to a repeated state whenever at least one time unithas elapsed
or when a visible event is executed or when anewsignal is emitted. The first two con-
ditions are trivial to deal with. For the last one we need to keep track of the last signal
that has been observed (ad with a 6= τ or d > 0) so that we can enter a repeated state
when anewsignal is observed (bδ with b 6= a andb 6= τ or δ > 0). The automatonA2

is obtained as a cartesian product ofA1 andB. Note that we cannot use an intersection
operation since Theorem 1 is used in the proof of Theorem 2.

Fourth step. Finally, it remains to transformA2 into an automatonA′ satisfying also
condition(‡). The only problem comes from final states whose invariant istrue. Words
of the formwa∞ accepted by finite runs ending in such states must now be accepted
by infinite runs. The idea is to use again the new clockz to measure time intervals of
length one. For each signala ∈ Σs, we add a new repeated statera with labela and
invariantz ≤ 1. We also add loops(ra, z = 1, ε, {z}, ra) and for each final statep
with labela and invarianttrue we add the transition(p, true, ε, {z}, ra) andp is not
final anymore. This gives the automatonA′ satisfying both conditions(†) and(‡) and
concludes the construction. ⊓⊔

Remark 2.If Zeno runs are not allowed (see Remark 1), condition(†) is true by defini-
tion of an accepted run. Hence the construction of an automaton satisfying Theorem 1
reduces to Fourth step above and is therefore much simpler.

In the same way, ifε-transitions are not allowed, an infinite run can accept onlyan
infinite word and Theorem 1 reduces to condition(‡).

4 Intersection

We present in this section the main construction of this paper.

Theorem 2. The classSELε is closed under intersection.

Note that one of the problems arising in the construction of the intersection comes
from the fact that a word can be accepted in two different automata by a finite and an
infinite run respectively. For instance, consider the two automataA3 andA4 in Figure 1.
We haveL(A3) = {ad | d ≥ 1} andL(A4) = {ad | d ≤ 1}, so thatL(A3)∩L(A4) =
{a1}. And this worda1 is accepted inA3 by a finite run and inA4 by an infinite run.
We will then use in a crucial way the normal form proposed by Theorem 1.

Before giving the general construction, let us point out some other difficulties. The
treatment of visible events is easy and will be done like in the untimed case through
a synchronized product. The case of signals is more tricky and needs more attention.
Indeed, let us consider the following example:

B1: p1

a

p2

a

p3

τ

p4

b

ε ε ε

B2: q1

τ

q2

a

q3

b

ε ε

Fig. 4. AutomataB1 andB2

If automatonB1 is in statep1 and automatonB2 in stateq3, they can not compute
anymore aSE -word which would be in the intersection of their languages.Indeed this
word should have at the same time a factorad with d ≥ 0 and a factorbδ with δ ≥ 0,
which is not possible sincea andb are different fromτ .

If automatonB1 is in statep1 and automatonB2 in stateq2, they can both produce
a signala.

Now if automatonB1 is in statep1 and automatonB2 in stateq1, whereas the labels
of the two states are different, it is still possible to produce a word of the intersection.
Indeed, it is sufficient to forceB2 to leave immediatelyq1 (i.e. to stay inq1 0 time unit),
B2 will thus produce a signalτ0 ≈ ε and thus not visible. This last case shows that we
should allow in the intersectionasynchronousmoves where only one of the automata
executes anε-transition.

We now proceed to the construction of aSE -automaton accepting the intersection
of the languages recognized by two automata

Aj = (Σe, Σs, Xj, Qj , Q
0
j , Fj , Rj , Ij , ℓj , ∆j)

for j = 1, 2 on the same alphabet, satisfying the conditions (†) and (‡) of Theorem 1. We
assume thatQ1 andQ2 (respectivelyX1 andX2) are disjoint and, when no confusion

can arise, we simply writeℓ for both labelling functionsℓ1 andℓ2. We also assume that
the automataA1 andA2 do not contain a trivial loop of the form(p, true, ε, ∅, p).

We define the automatonA = (Σe, Σs, X, Q, Q0, F, R, I, ℓ, ∆) designed to accept
L(A1) ∩ L(A2) as follows.

– We setX = X1 ∪ X2 ∪ {z}, wherez is a new clock used to control if the time
elapsed in a state ofA is zero or not.

– The setQ ⊆ Σs × Q1 × Q2 × {0, 1, 2} consists of all tuples(a, p, q, i) satisfying
• ℓ1(p), ℓ2(q) ∈ {a, τ} and
• i = 1 if and only if ℓ1(p) = ℓ2(q) = a.

Note that, the conjunction of these two constraints impliesthat if the first compo-
nent isa = τ then the last component must bei = 1.

– For (a, p, q, i) ∈ Q, we set
• ℓ(a, p, q, i) = a andI(a, p, q, i) = I1(p) ∧ I2(q) if i = 1 and
• ℓ(a, p, q, i) = τ andI(a, p, q, i) = I1(p) ∧ I2(q) ∧ z ≤ 0 otherwise.

The intuitive idea behind the fourth component of the statesof A is the following:

– Value 0 means that one of the automata is ready to perform somesignala 6= τ
and is waiting for the other to reach a state labelleda with ε-transitions and in-
stantaneously traversingτ -labelled states. If a synchronization is not possible on
signala, then the whole computation will not produce any acceptingSE -word of
the intersection,

– Value 1 means that the two automata emit the same signals,
– Value 2 means that the two automata were producing the same signals but have

“lost” their synchronisation (due anε-transition performed by one of them). As in
the case of value 0, they will try to re-synchronize. But the whole computation can
still progress even if this synchronization is not possibleanymore.

The transition relation∆ consists ofsynchronousmoves where both automata progress
simultaneously and ofasynchronousmoves where one automaton is idle while the sec-
ond one performs anε-transition.

A synchronous move is not possible in a state of the form(a, p, q, 0) since a syn-
chronization is expected first. Consider two states(a, p, q, i) and (a′, p′, q′, i′) in Q
with i 6= 0 and i′ 6= 2. For any two transitionsδ1 = (p, g, b, α, p′) ∈ ∆1 and
δ2 = (q, h, b, β, q′) ∈ ∆2 with b 6= ε if a = a′, we add in∆ the synchronous transition

δ = (a, p, q, i)
g∧h,b,α∪β∪{z}
−−−−−−−−−−→ (a′, p′, q′, i′)

and we setπj(δ) = δj for j = 1, 2.

Consider now a state(a, p, q, i) ∈ Q. For any transitionδ1 = (p, g, ε, α, p′) ∈ ∆1

with ℓ1(p
′) ∈ {a, τ} we add in∆ the asynchronous transition

δ = (a, p, q, i)
g,ε,α∪{z}
−−−−−−→ (a, p′, q, i′)

wherei′ is updated so that(a, p′, q, i′) is a legal state and the choice between values 0
and 2 is made according to the abstract description in Fig. 5.Formally, if a = τ then
i′ = 1 is the only possibility. Now, ifa 6= τ we have the following cases:

– i′ = 1 if ℓ1(p
′) = ℓ2(q) = a: synchronization ona is active,

– i′ = 0 if i = 0 and (ℓ1(p
′) = τ or ℓ2(q) = τ): synchronization ona has not yet

been achieved,
– i′ = 2 if i 6= 0 and (ℓ1(p

′) = τ or ℓ2(q) = τ): synchronization ona has been lost.

We setπ1(δ) = δ1 andπ2(δ) = ε. We proceed symmetrically for asynchronous transi-
tions ofA2.

In the construction above, the subset of states with first componenta is designed
to handle maximal blocks of the formad. This part of the intersection is represented
for a 6= τ by the abstract automaton in Figure 5. Note that all the transitions are asyn-
chronousε-transitions which reset the clockz.

a,−,−, 1
a, true

a,−,−, 0
τ, z ≤ 0

a,−,−, 2
τ, z ≤ 0

Fig. 5.Handling blocksad, for a 6= τ

Since we have assumed thatA1 andA2 do not contain a trivial loop of the form
(p, true, ε, ∅, p), the projectionsπj(δ) for j = 1, 2 are well-defined. Indeed, ifδ =
((a, p1, p2, i), g, b, α ∪ {z}, (a′, q1, q2, i

′)) ∈ ∆ theng is of the formg1 ∧ g2 where
gj involves clocks ofAj only. Hence, if we letαj = α ∩ Xj we getπj(δ) = ε if
(gj = true and b = ε andαj = ∅ and qj = pj) andπj(δ) = (pj , gj, b, αj , qj)
otherwise.

A pathP of A can be seen as a sequenceδ1δ2 · · · of transitions in∆. Clearly, the
projectionπj(P) = πj(δ1)πj(δ2) · · · is a path ofAj .

The initial and final states are defined byQ0 = Q ∩ (Σ × Q0
1 × Q0

2 × {0, 1}) and
F = Q∩ (Σ × F1 × F2 × {1, 2}). We will not define the repeated statesR explicitely.
Instead, an infinite runP of A will be accepting if and only if each projectionπj(P)
is infinite and accepting inAj . It is well-known how to turn this intersection of Büchi
conditions into a Büchi condition using some additional information [13]. For the sake
of simplicity, we skip this easy construction here.

Note that, since conditions(†) and(‡) hold forA1 andA2, they also hold forA.

Examples The next easy examples illustrate the construction and the usefulness of
the additional componentsa andi. Consider the two automataB1 andB2 in Figure 4,
which have only finite runs and thus satisfy condition(†). We could easily ensure that
they also satisfy the condition(‡) by adding invariants in the final states, which is
omitted for simplicity. Recall that in our model, the signalτ0 is equivalent to the empty
word ε. Consequently, the language accepted byB1 is {ad1τd2bd3 | d1, d3 ≥ 0, d2 >

0} ∪ {ad1bd3 | d1, d3 ≥ 0} while B2 accepts{τd1ad2bd3 | d1 > 0, d2, d3 ≥ 0} ∪
{ad2bd3 | d2, d3 ≥ 0}. HenceL(B1) ∩ L(B2) = {ad1bd3 | d1, d3 ≥ 0}. A word is in
the intersection (if and) only if the states labeled byτ are crossed instantaneously by an
accepting run.

The automatonB constructed for the intersection is represented in Figure 6. All
transitions areε-transitions which reset the clockz.

Handling signala

a, p1, q1, 0
τ, z ≤ 0

a, p2, q1, 0
τ, z ≤ 0

a, p1, q2, 1
a

a, p2, q2, 1
a

a, p3, q1, 0
τ, z ≤ 0

a, p3, q2, 2
τ, z ≤ 0

a, p3, q2, 0
τ, z ≤ 0

Handling signalbb, p3, q3, 0
τ, z ≤ 0

b, p4, q3, 1
b

Fig. 6.Resulting automatonB

We now modify automataB1 andB2 intoB′
1 andB′

2 by adding loops, as represented
in Figure 7. In this case, the words in the intersection may contain factors of the form
τd, as can be seen on the resulting automatonB′ in Figure 8.

B′

1: p1

a

p2

a

p3

τ

p4

b

ε
ε

ε

ε

B′

2: q1

τ

q2

a

q3

b

ε

ε

ε

Fig. 7. AutomataB′

1 andB′

2

We insist that the construction relies on condition(†). Consider again the two au-
tomataA3 andA4 in Figure 1. Condition(†) does not hold forA4, becausea1 is ac-
cepted by an infinite run. We haveL(A3) ∩ L(A4) = {a1}. Note that the construction
given in the proof of Theorem 2 would fail in this case since itwould yield the automa-
tonA in Figure 9. We haveL(A) = ∅ for two reasons. FirstA contains no final state
and it admits also no accepting infinite run since the first projection of the run cannot be

a, p1, q1, 0
τ, z ≤ 0

a, p2, q1, 0
τ, z ≤ 0

a, p3, q1, 0
τ, z ≤ 0

a, p3, q2, 0
τ, z ≤ 0

a, p1, q2, 1
a

a, p2, q2, 1
a

a, p1, q1, 2
τ, z ≤ 0

a, p2, q1, 2
τ, z ≤ 0

a, p3, q1, 2
τ, z ≤ 0

a, p3, q2, 2
τ, z ≤ 0

b, p3, q3, 0
τ, z ≤ 0

b, p4, q3, 1
b

b, p4, q1, 0
τ, z ≤ 0

b, p3, q1, 0
τ, z ≤ 0

τ, p3, q1, 1
τ

Fig. 8. Resulting automatonB′

A : a, p1, q1, 1
a, y < 1

a, p2, q1, 1
a, y < 1

x ≥ 1, ε, {z}
ε, {z} ε, {z}

Fig. 9. Resulting automatonA

infinite. This is not actually the main problem. We could havedefinedA so that a path
P is accepting if and only if both projectionsπ1(P) andπ2(P) are accepting (finite or
not). Then the argument above does not apply anymore. Still we would haveL(A) = ∅
due to the invarianty < 1 and the guardx ≥ 1.

Remark 3.If we consider signal-event automata whereε-transitions are not allowed,
the treament of the intersection becomes much simpler. Indeed, the intersection of two
SE -automata withoutε-transitions can be done in a classical way, i.e., as a product of
automata and a suitable treatment of Büchi conditions.

5 Conclusion

We proposed in this paper a construction for the intersection of two signal-event au-
tomata in the most general framework, working on finite and infinite signal-event words
and taking into account signal stuttering, unobservability of zero-durationτ -signals and
Zeno runs.

While constructions were proposed in the literature for important particular cases, it
is the first time, up to our knowledge, that the general case istreated. There has been in
the area of timed automata some examples of subtly erroneousconstructions (e.g. with

respect to forward analysis [8]) which should convince us ofthe importance to publish
complete and proved constructions.

Moreover, it turns out that the closure of signal-event automata under intersection,
and the normal form achieved in Theorem 1, are crucial to study the closure ofSE -
languages recognized by such automata under timed substitutions [6].

References

1. R. Alur and D.L. Dill. Automata for modeling real-time systems. InProceedings of
ICALP’90, number 443 in LNCS, pages 322–335. Springer, 1990.

2. R. Alur and D.L. Dill. A theory of timed automata.Theoretical Computer Science, 126:183–
235, 1994.

3. E. Asarin, P. Caspi, and O. Maler. A Kleene theorem for timed automata. InProceedings of
LICS’97, pages 160–171. IEEE Comp. Soc. Press, 1997.

4. E. Asarin, P. Caspi, and O. Maler. Timed regular expressions. Journal of the ACM,
49(2):172–206, 2002.

5. B. Bérard, V. Diekert, P. Gastin, and A. Petit. Characterization of the expressive power of
silent transitions in timed automata.Fundamenta Informaticae, 36:145–182, 1998.

6. B. Bérard, P. Gastin, and A. Petit. Refinements and abstractions of signal-event (timed)
languages. InProceedings of FORMATS’06, number ??? in LNCS, pages ??–??. Springer,
2006.

7. B. Bérard, P. Gastin, and A. Petit. Timed substitutions for regular signal-event languages.
Research Report LSV-06-04, Laboratoire Spécification et Vérification, ENS Cachan, France,
February 2006.

8. P. Bouyer. Forward analysis of updatable timed automata.Formal Methods in System Design,
24(3):281–320, May 2004.

9. P.J.L. Cuijpers, M.A. Reniers, and A.G. Engels. Beyond zeno-behaviour. Technical Report
CSR 01-04, Department of Computing Science, University of Technology, Eindhoven, 2001.

10. C. Dima. Real-Time Automata and the Kleene Algebra of Sets of Real Numbers. InPro-
ceedings of STACS’2000, number 1770 in LNCS, pages 279–289. Springer, 2000.

11. J. Durand-Lose. A Kleene theorem for splitable signals.Information Processing Letters,
89:237–245, 2004.

12. M.R. Hansen, P.K. Pandya, and C. Zhou. Finite divergence. Theoretical Computer Science,
138:113–139, 1995.

13. D. Perrin and J.-E. Pin.Infinite words. Elsevier, 2004.

