Abstract
We propose in this paper a construction for a “well known” result: regular signal-event languages are closed by intersection. In fact, while this result is indeed trivial for languages defined by Alur and Dill’s timed automata (the proof is an immediate extension of the one in the untimed case), it turns out that the construction is much more tricky when considering the most involved model of signal-event automata. While several constructions have been proposed in particular cases, it is the first time, up to our knowledge, that a construction working on finite and infinite signal-event words and taking into account signal stuttering, unobservability of zero-duration τ-signals and Zeno runs is proposed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)
Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)
Asarin, E., Caspi, P., Maler, O.: A Kleene theorem for timed automata. In: Proceedings of LICS 1997, pp. 160–171. IEEE Comp. Soc. Press, Los Alamitos (1997)
Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. Journal of the ACM 49(2), 172–206 (2002)
Bérard, B., Diekert, V., Gastin, P., Petit, A.: Characterization of the expressive power of silent transitions in timed automata. Fundamenta Informaticae 36, 145–182 (1998)
Bérard, B., Gastin, P., Petit, A.: Refinements and abstractions of signal-event (timed) languages. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 67–81. Springer, Heidelberg (2006)
Bérard, B., Gastin, P., Petit, A.: Timed substitutions for regular signal-event languages. Research Report LSV-06-04, Laboratoire Spécification et Vérification, ENS Cachan, France (February 2006)
Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods in System Design 24(3), 281–320 (2004)
Cuijpers, P.J.L., Reniers, M.A., Engels, A.G.: Beyond zeno-behaviour. Technical Report CSR 01-04, Department of Computing Science, University of Technology, Eindhoven (2001)
Dima, C.: Real-Time Automata and the Kleene Algebra of Sets of Real Numbers. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 279–289. Springer, Heidelberg (2000)
Durand-Lose, J.: A Kleene theorem for splitable signals. Information Processing Letters 89, 237–245 (2004)
Hansen, M.R., Pandya, P.K., Zhou, C.: Finite divergence. Theoretical Computer Science 138, 113–139 (1995)
Perrin, D., Pin, J.-E.: Infinite words. Elsevier, Amsterdam (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bérard, B., Gastin, P., Petit, A. (2006). Intersection of Regular Signal-Event (Timed) Languages. In: Asarin, E., Bouyer, P. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2006. Lecture Notes in Computer Science, vol 4202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867340_5
Download citation
DOI: https://doi.org/10.1007/11867340_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45026-9
Online ISBN: 978-3-540-45031-3
eBook Packages: Computer ScienceComputer Science (R0)