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Abstract. We propose in this paper a construction for a “well known’utes
regular signal-event languages are closed by intersedtidact, while this result
is indeed trivial for languages defined by Alur and Dill's #thautomata (the
proof is an immediate extension of the one in the untimed)cédisturns out
that the construction is much more tricky when considerimg rmost involved
model of signal-event automata. While several constrostitave been proposed
in particular cases, it is the first time, up to our knowleddpat a construction
working on finite and infinite signal-event words and takingpiaccount signal
stuttering, unobservability of zero-duratiersignals and Zeno runs is proposed.

1 Introduction

In order to accept timed words, the model of timed automatfiwst proposed in [1,
2]. It has been widely studied for the last fifteen years aratassfully applied to in-
dustrial cases. For this model, an observation, called e-#went word, may be viewed
as an alternating sequence of waiting times and instantareegiions. A timed automa-
ton is a finite automaton extended with variables calledkdpdesigned to recognize
time-event words: time elapses while the control stays iivargnode and an event is
observed when a discrete transition occurs.

Another model was introduced by [3], and further studied1, 4, 11] with the
aim of describing hardware systems. In this case, an olis@mia a signal word, i.e.
a sequence of factors!, wherea is a signal and! is its duration. The original model
of timed automata was then modified to fit this setting: a dighamitted while the
automaton stays in some state and no event is produced whisoratd transition is
fired. In this framework, when a transition occurs betweea states with the same
signala, we obtainz®' followed bya?2, which are merged in?1+92, This phenomenon
is called stuttering.

It was noticed in [4] that both approaches are complemeitadycan be combined
in an algebraic formalism to obtain the so-called signa&réwnonoid. Timed automata
can be easily adapted to take both signals and events inbaiaiz¢hus yielding signal-
event automata: states emit signals and transitions peoghents.

We consider in this paper both finite and infinite behaviorsigial-event automata
and we also include unobservable evertsrénsitions) and hidden signals-{abeled
states). These features can be very useful and even nagdssarstance for handling



abstractions [6]. They also allow us to get as special cdsemitial models of timed
automata and signal automata.

We study in this paper a construction for the intersectiolanfuages accepted by
signal-event automata. Surprisingly, it turns out thad ttiosure property is rather dif-
ficult to obtain. Usually, the construction for interseati@lies on a basic synchronized
product. In [1], which deals with infinite time-event wordsly (no signal is involved),
a Buchi-like product is performed. The situation is morenptex for signal words due
to stuttering of signals and unobservability of zero-dimrasignals. In [3], a construc-
tion is given for the intersection of signal automata, buther signal stuttering nor
unobservability of zero-duration signal is taken into agup and only finite runs are
considered. Note that the full version [4] of [3] deals wittetintersection of usual
timed automata only. In [10], in order to obtain a determatian result, a construction
is proposed to remove stuttering and zero-duration sigoralsignal automata using a
single clock but intersection is not considered directhy[11], stuttering is handled
but intersection is done for signal automata acting on fggguences only and without
zero-duration signals. To cope with stuttering, interragglstates angtransitions are
added to the automaton, thus introducing all possible waggliting some signak?
into a finite concatenation™ . . . a®. When dealing withu-sequences, this approach
would produce additional Zeno runs leading to another dilfjcarising with the pos-
sibility to accept a finite signal-event word of finite ducatiwith either a finite run or
an infinite Zeno run.

We provide a general construction for the intersection ghal-event timed au-
tomata working on finite and infinite signal-event words. \Wvs the main difficulties
of signal stuttering, unobservability of zero-duratiesignals and Zeno runs. Note that,
although Zeno behaviours have been studied (see for iresfafc9]), it has been some-
times argued that excluding Zeno runs directly from the seios of timed automata
is a realistic assumption, since they do not appear in “regtems. However, the se-
mantics of timed automata used by model-checking tooldJikeAAL do include Zeno
runs while performing forward reachability analysis (tbén be easily checked with an
example). Hence, we think that the general theory shoulddecZeno runs as well.

We first give in Section 2 precise definitions of finite and iitérsignal-event lan-
guages, with the corresponding notion of signal-eventraata. Section 3 establishes a
normal form for signal-event automata so that no infiniteaaocepts a finite word with
finite duration and no finite run accepts a word with infiniteation. This normal form
is useful for the general construction of intersection ghsi-event automata dealing
both with signal stuttering and with finite and infinite senoes proposed in Section 4.

For lack of space, this paper does not contain the proofseo€tirectness of the
different automata constructions we propose. These pevefavailable in the technical
report [7].

2 Signal-event words and signal-event automata

Let Z be any set. We write/* (respectivelyZ*“) the set of finite (respectively infinite)
sequences of elements i with ¢ for the empty sequence, adt® = Z* U Z* the



set of all sequences of elementsin The setZ° is equipped with the usual partial
concatenation defined froti* x Z°° to Z°.

Throughout this paper, we consider a time donf@iwhich can be either the set
N of natural numbers, the s€t, of non-negative rational numbers or the Bt of
non-negative real numbers and weBet T U {co}.

2.1 Signal-event words

We now describe the most general class of systems where lez#wise-constant sig-
nals and discrete events can occur, based on the signdlragenid defined in [4]. We
consider two finite alphabefs, andY, with ¥ = ¥, U (X5 x T): an element irZ, is
the label of an instantaneous event, while a pajr) € X, x T, writtena?, associates
a durationd with a signala. Moreover,Y, includes the special symbelfor an internal
(or hidden) signal, the purpose of which is to representasdn where no signal can
be observed.

Intuitively, signal-event word§SE-words for short and sometimes callithed
word9 correspond to sequences obtained frAfiY by merging consecutive identical
signals and removing internatsignals with duratio). But note that signals different
from 7 may have a null duration.

Formally, the partial monoid of signal-event words is thetignt>’>°/ ~ where~
is the congruence (with respect to the partial concatenatin”’>°) generated by

{ O~ and
i o~ d{- H —
[Liesa% = [Tjcsa% if Yicrdi=>c,d;

where the index setsand.J above may be infinite. The partial monaitt®/ ~ will be
denotedSE (X, T) or simply SE(X') or SE when there is no ambiguity. We write®
for the equivalence class of any sequence of the fofm, a?:, where}",. | d; = .
Note that for two words of the formsa? anda? v with d < oo, the concatenation is
ua‘”d,v.

A finite or infinite sequence i’>° U X* - (X5 x {oco}) which does not contain’
and such that two consecutive signals are distinct is salmetm normal form(NF).
SE-words are often identified with sequences in normal férrE-word isfinite if its
normal form is a finite sequence (even if it ends with).

A duration can be associated with each element'diy: ||a|| = 0if a € X, and
lad|| = dif a € X andd € T, so that the duration of a sequenge= s;s - - - in X*°
is |w]| = Y_,5, |Isill € T. Note that the duration restricted to fini&&-words with
finite durations is a morphism frod* into (T, +). A Zenoword is aSE-word with
finite duration and whose normal form is infinite.signal-event languagéor timed
languag@ is a set ofSE-words.

Example 1.Let ¥, = {f,¢g} andXs = {a,b}. The SE-word w = a®f fgr*5alb®
can be viewed as the following sequence of observations; fiivs signala during 3
time units, then a sequence of three instantaneous ef¢ntshen some unobservable
signal duringd.5 time units, again the signalduring1 time unit and then the signal
during5 time units. The total duration ab is 13.5. For infinite SE-words, we have for



instanceu®g fa' [[,~, a®* = a*a’gf [];>, a* and the normal form is writtem®g f a>°.
Note also that an iﬁfinite timed sequenceli may be a finiteSE-word with finite
duration:[ ;5 a'/? ~ a®.

2.2 Signal-event (timed) automata

Our model ofsignal-event automatéalso calledtimed automatan the sequel) is a
variant of the basic models proposed in the literaturegiatiing both instantaneous and
durational semantics: signals are associated with theamtates, while instantaneous
events occur when the system switches between two states.

Clocks and guardsLet X be a set of variables with valuesTh called clocks. The set
C(X) of guards or clock constraints ov&Tconsists of conjunctions of atomic formulas
x X ¢, for a clockz, a constant € T and a binary operatex in {<, <, =,>,>}.

A clock valuationw : X — T is a mapping that assigns to each clack time value
v(z). The set of all clock valuations B* . We writev |= g when the clock valuation
satisfies the clock constraintlf ¢ is an element of" anda a subset o, the valuations
v+t andv|a] are defined respectively ly + t)(x) = v(z) + ¢, for each clock: in X
and(v[a])(z) = 0if z € o, and(v[a])(x) = v(x) otherwise.

Signal-event (timed) automata# Biichi signal-event automaton over the time domain
Tisatupled = (X, X, X,Q,Qo, F,R,I,¢, A), whereX, and X are alphabets of
events and signals is a finite set ofT-valued clocks( is a finite set of control states,
Qo C @ is a subset of initial statedy C @ is a subset of final states aritl C @
corresponds to a Biichi acceptance condition. The mapping — C(X) associates
with a stateg € @ aninvariant I(¢q) being a conjunction of constraints of the form
x e, with e {<, <}, andl : Q — X associates a signal with each state.

The set of transitions ig\ C @ x C(X) x X U {e} x P(X) x Q. A transition,
also writteng 2%, ¢/, is labeled by a guarg, an instantaneous event k. or the
unobservable event and the subset of clocks to be reset. When= ¢, it is called an
e-transition or a silent transition. Recall that, contraryhe untimed case;transitions
increase the expressive power of timed automata [5].

First examples of signal-event automata are given in Figjréhere double-circled
nodes correspond to Bichi repeated states). The semaniti€s-automata will be
given below. But intuitively,

— A SE-word is accepted by, if it is of the form a® 6?2 with d; > 1.

— A SE-word is accepted byl if it is of the forma® ca®c. .. with d; < 1 for any
7.

— Since the concatenation merges consecutive identicadlsigr a2 = q91+92),
the language accepted by consists of the signal emitted for a duratioa > 1.

— A4 accepts the signalemitted for a duratiod < 1 (note that:! is accepted by an
infinite run with successive duratiogs 1, , ... forinstance).
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Fig. 1. Some signal automata.

Semantics.In order to define the semantics S§£-automata, we recall the notions
of path and timed run through a path. A path.nis a finite or infinite sequence of
consecutive transitions:

g2,a2,02

P =g &% g q2- .., where(qi—1,gi, ai, 0, q;) € A, Vi >0

The path is said to bacceptingf it starts in an initial stateqy € Qo) andeitherit is
finite and ends in a final stater it is infinite and visits infinitely often aepeatedstate
g € R. A run of the automaton through the pathis a sequence of the form:

al a2

d d
(g0, v0) — (g0, v0 + do) — {(q1,v1) — {q1,v1 +d1) == (g2, v2) . ..
where

— d; € Tfori > 0 and if P is finite with n transitions then the last step of the run
must be(q,,, v, ) L, {(qn, v +dy), withd,, € T,

— (v;)i>0 are clock valuations such thaf(x) = 0 for all z € X, and for each > 0,
we have

v; + d ): I(qi), Vd € [0, dz]
v +di E gita
Viy1 = (vi +di)[cviy]

Note that ifd; is finite, the condition about invariatitg;) can be replaced simply
by vi +d; = 1(gi)-

The signal-event (timed) word generated by this run is grthle equivalence class
of) £(qo)%™a1€(q1)% azl(q2)? . ... The signal-event (timed) language accepted4dy
over the time domaiff and the alphabe¥, written £(.A), is the set ofSE-words gen-
erated by (finite or infinite) accepting runs.df Two automatad andB3 areequivalent
if L(A) = L(B).

The set of all signal-event (timed) automata is denotedByl. and the family of
signal-event (timed) languages generated by some autarmat®¥ A. is denoted by
SEL..



Remark 1.A Zeno runis an infinite run for which the time sequence defined by
ng d; fori > 0, is convergent (keeping the notations just above). We didnotude
the non Zeno condition for runs, requiring that each infiaiteepting run has an infinite
duration. Thus, Zeno runs accepting finite words with finiteadion may occur. Note
that they also appear in the semantics of model-checkinlg tid® UPPAAL, as can
easily be checked with an example.

3 Normal forms

We propose in this section two technical results on the emest of “normal forms” for
timed runs and signal-event automata. These existencsangkucial for the proof of
the main result in the next section.

Recall that the normal form, obtained by merging conseeutientical signals and
removing factors of the form®, contains only visible eventsin X, and visible blocks
a? with eitherd > 0 or a # 7. Thealternating normal form(ANF) of a SE-word
insists on a strict alternation between events and sigh#ie &xpense of keeping some
invisible events{) and some invisible signals{).

More precisely, a sequenae= agobla‘fle --- overX U {e} isin ANF if for all &
we haveb, = ¢ impliesay_1 # ay andazkjf £ 70 A4 azk.

Example 2.Let ¥, = {f, g} andX; = {a, b}.

— a' fa3ga?? is both in ANF and in NF,
— fa?gfa®5b* is in NF but not in ANF. Its ANF is™® fa?g7° fa?-2eb?,
— 79f7%(a%eb3c)* is in ANF but notin NF. Its NF isfg(a?b3)~.

Note that the ANF of & F-word is unique. Indeed, assume that= eo'“clefl Cye-
is also in ANF. Assume thaag" #+ eg‘). Eitherag = eg anddy < fy and we must have
by = e. We deduce that; # ag andal® # 7° # a{'. A contradiction since in this case
w cannot start simultaneously bﬁ” and byag"blafl. Orag # ¢¢ and for instance
ap = T # eg. Then we must havé, = 0 andb; = ¢, a contradiction with the ANF.
Hence we haveg0 = eg“. Assume now thal; # ¢;. Then for instance; # ¢ and we
must haveh; = . Once again, this implies; # ao andal® # 7° # af* leading to a
contradiction as above. By induction, this shows that thé=A&\unique.

We extend the ANF to runs and paths of&-automaton3 as follows. Letp =

{(po,vo) Lo, (Po,vo + do) b, (p1,v1) 41, ... be a run for aSE-word w through
some pathP? = p, 22002 0 #2822 of B For the sake of simplicity, we

assume thgb and P are infinite. Our construction is similar whenand P are finite.
For0 <i < k < oo, we definel(i, k) = {{(p;) | i < j < kandl(p;)% # 1°}.

We build inductively the ANF op and P and we simultaneously fix some notation.
We start withj, = 0. Assume thaj;, < oo has been defined. Intuitively, from the state
pj.,» we look for the first state where either an evest ¢ is performed or a different
signal is produced. Formally, we Igt1 = inf{j > ji | b; # e or [(jx,j + 1)| =
2} with the conventiorinf()) = . Let P, be the subpath oP starting atp;, and
ending atp,,—1 if n = jr+1 < oo and similarly, letp,, be the subrun op starting at



(Pji, 5, ) @nd ending atp,—1,vn—1 + dn—1) if B = jr41 < oco. Letalsoa, = 7 if
L0k, jrr1) = 0 and{ar} = £(jx, jr+1) Otherwise. Finally, leD;, = ijsjqkﬂ d;.
Forji < j < jiky1 we haveb; = e and forj, < j < ji41 we have eithef(p;) = ay,
or{(p;) = 7 andd; = 0. Hencepy isa run forakD’“ throughP.

9410415054 P 9o 1bja 0t
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By construction, we havé® = P,
b b . .
po —= p1 —=» pa - -- Which are the ANF ofP andp respectively. We also have =

atbj aP'b;,al? - - - and this is the ANF ofv. Indeed, ifb;, = ¢ then|¢(jr_1, jx +
1| = 2 hencea';" # 7° £(p;, )" # 7° and((p;,) # ar—1. We deduce that
ar = U(pj,) # aj—1 anda;* # 7°.

Py---,andp =

A normal form for signal-event automata. We show how to transform a signal-event
automaton into an equivalent one, in which finite acceptintsrcorrespond exactly to
finite words with finite duration. The result is interestingiiself for implementation
issues: when a finite word with finite duration is accepted mynéinite run, we build
instead a finite accepting run for this word. Furthermoregditons(}) and (1) below
will be used in the next section for the intersection corcitom.

Note that the transformation removes a particular type ofaZeins, those which
contain ultimately only-transitions and a single signal. But it keeps Zeno runsecorr
sponding to infinite words of finite duration.

Theorem 1. Let.4 be aSFE-automaton. We can effectively construct an equivalént
automatonA’ such that:

(1) no infinite run ofA’ accepts a finite word with finite duration, and
(1) no finite run ofA’ accepts a word with infinite duration.

We start from an automatad = (X, X, X, Q, Qo, F, R, I, ¢, A). We first con-
struct an automaton satisfying conditifi). We need to distinguish whether time pro-
gresses infinitely often or not.

First step. We first suppress infinite runs where time does not progrésstedy often.
Such a run generates a word of the farar® with h < oo and loops eventually through
some repeated stateThe loop is constituted af-transitions and states of lahebr 7,
all crossed instantaneously. The intuitive idea is to detech a loop and to replace it
by a single transition to a new final state. More formally, oy signalz, we build an
automatonA(a, 0) which contains the states and transitionsdbfogether with some
new states and transitions described below (see Fig. 2 fimtaitive view).

e {z}

Fig. 2. The automatom(a, 0)



Letz ¢ X be anew clock. The automatot{a, 0) contains the states and transitions
of A. Moreover, for eactip, g,¢, o, q) € A with {¢{(p),4(q)} C {a, 7}, we add the
following states and transitions:

(p,g,e,0U{z},9) if ¢ is a repeated state of

1) (P, 9,¢,a,(q;p))
((ps7), 9,8, 2, (q,7))

For the new states, we |&(F) = ¢(r), I(F) = I(r), L(p,7) = £(p), I(p,7) = I(p).
These new transitions simulate a loop around some repeated sust before reach-
ing , we move into the copy and reaglinstead. We rememberuntil reaching(r, ),
where we know that the loop has been successfully compl@teerefore, we also
add the transition$(r, ), e, f) where f is a new state which is the only final state
of A(a,0), with £(f) = 7 andI(f) = z < 0. The invariant off ensures that the states
of the form7 or (p, ¢) have been crossed instantaneously.

The automatom(a, 0) has no repeated states and its initial states are thade of

Second stepWe now treat the case of Zeno runs where time progressegétfinften.
As in the first step, the idea is to introduce copiesiah which we unfold once a loop
around some repeated state to check if it can be taken ilfioitieen within finite time.
But the construction is much more tricky since timing coaistis have to be verified.

Let wa? be a finite word with finite duration accepted by with some infinite
run p through some infinite pat® and such that time progresses infinitely often in
p- We denote byC (A, a) the set of such words. L&f be the set of clocks that are
not reset infinitely often inP. For eachy € Y, letm, = sup{c | y > cory >
c occurs infinitely often in the guards &} with the conventiomup @ = 0. Similarly,
for eachy € Y, let M, = inf{c | y < cory < ¢ occurs infinitely often in the guards
or invariants ofP} with the conventioninf () = co. Finally, we letm = (m,),cy and
M = (M,),cv. Note that all transitiongp, g, b, o, ¢) used infinitely often inP satisfy

-4(p),(q) € {a, 7}, b=candanY =0,

-Vy eY,if y > cory > cis aconstraint iry thenm,, > ¢,
-VyeY,ify <cory <cisaconstraintiry, I(p) or I(q) thenM, <,
-Ve e X\Y,ifx > corz > cisaconstraintiry thenc =0 .

)

The last condition holds sineea? has a finite duration.

o LAvzmects N 20
'U

Fig. 3. The automatom(a, Y, m, M)

We build an automaton(a, Y, m, M) depending only otta, Y, m, M) which ac-
ceptswa® with a finite run (note that the number of distinct tuplesY, m, M) is



finite). Letz ¢ X be a new clock. The automatof(a, Y, m, M) contains the states
and transitions ofd together with some new states and transitions described/{see
Fig. 3 for an intuitive view). It has no repeated states amhitial states are those of.
Let (p,g,e,,q) € A be a transition of4 satisfying(2). We add the following states
and transitions:

(9N Nyey ¥ = my,e,aU{2},7) if £(q) = a,
3) @,gNz>0,e,aU{z},(¢,p,,(qg € R))) if £(p) = a,
((p,r,B,9), 9,6, U{z2}, (¢;r,aU B, 0V (¢ € R)))

For the new states, we 1é(F) = a, I(T) = I(r), {(p,r, B,) = £(p), I(p,r,B,0) =

I(p) if £(p) = aandI(p,r,B,¢) = I(p) A z < 0 otherwise. These new transitions
simulate a loop around some repeated stajest before reaching, we move into the
copy and reach instead, while satisfying the lower constraints. We rememtuntil
reaching(r,r, X \ Y, true), where we know that the loop has successfully terminated
because we crossed some repeated state (R)). Therefore, we also add the tran-
sitions ((r, 7, X \ Y, true), true, e, {z}, f) wheref is a new state which is the only
final state ofA(a, Y, m, M) and with{(f) = a andI(f) = A ey y < M, (with the
convention thayy < oo is true).

Third step. The resulting automatod; is the disjoint union of all automatd(a, 0)
and.A(a, Y, m, M). All finite words with finite duration accepted b§ can be accepted
by finite runs of.4; and£(A;) C L(.A). To obtain an equivalenfE-automatonA,
satisfying the conditiorit), it remains to keep only the infinite runs dfwhich accept
words with either an infinite duration or an infinite lengttorkhis, we define an au-
tomatonB which goes to a repeated state whenever at least one timbamélapsed
or when a visible event is executed or wheneavsignal is emitted. The first two con-
ditions are trivial to deal with. For the last one we need tegkrack of the last signal
that has been observedf(with a # 7 or d > 0) so that we can enter a repeated state
when anewsignal is observed{ with b # a andb # 7 or § > 0). The automatom,

is obtained as a cartesian productf andB. Note that we cannot use an intersection
operation since Theorem 1 is used in the proof of Theorem 2.

Fourth step. Finally, it remains to transforml, into an automatopd’ satisfying also
condition(f). The only problem comes from final states whose invariatitic:. Words

of the formwa® accepted by finite runs ending in such states must now be @ttep
by infinite runs. The idea is to use again the new cle¢k measure time intervals of
length one. For each signale Y, we add a new repeated statewith labela and
invariantz < 1. We also add loop$r,,z = 1,¢,{z},r,) and for each final statge
with labela and invariantrue we add the transitiofp, true, ¢, {z},r,) andp is not
final anymore. This gives the automatdh satisfying both conditionéf) and(f) and

concludes the construction. O

Remark 2.If Zeno runs are not allowed (see Remark 1), conditioris true by defini-
tion of an accepted run. Hence the construction of an autmmsatisfying Theorem 1
reduces to Fourth step above and is therefore much simpler.

In the same way, if-transitions are not allowed, an infinite run can accept anly
infinite word and Theorem 1 reduces to condit{gh



4 Intersection

We present in this section the main construction of this pape
Theorem 2. The classSEL, is closed under intersection.

Note that one of the problems arising in the constructiorhefihtersection comes
from the fact that a word can be accepted in two differentraata by a finite and an
infinite run respectively. For instance, consider the twiomatads and.A, in Figure 1.
We havel(As) = {ad | d > 1} andL(Ay) = {a? | d < 1}, so thatC(A3) NL(Ay) =
{a'}. And this worda! is accepted ind3 by a finite run and ind4 by an infinite run.
We will then use in a crucial way the normal form proposed bgdrem 1.

Before giving the general construction, let us point out sather difficulties. The
treatment of visible events is easy and will be done like i tintimed case through
a synchronized product. The case of signals is more tricklyreeds more attention.
Indeed, let us consider the following example:

Bi: P € ‘67} € _@ € D4
S

Bo: Q1 € @ € 43
T w b

Fig. 4. Automatal5; andB;

If automatonB; is in statep; and automatotS; in stategs, they can not compute
anymore aSE-word which would be in the intersection of their languadedeed this
word should have at the same time a factbwith d > 0 and a factob® with § > 0,
which is not possible sinceandb are different fromr.

If automaton3; is in statep; and automatoi, in stategs, they can both produce
a signala.

Now if automator3; is in statep; and automatoif, in stateg;, whereas the labels
of the two states are different, it is still possible to proda word of the intersection.
Indeed, it is sufficient to forc8; to leave immediately; (i.e. to stay ing; 0 time unit),

B will thus produce a signat® ~ ¢ and thus not visible. This last case shows that we
should allow in the intersectioasynchronousnoves where only one of the automata
executes an-transition.

We now proceed to the construction ob&-automaton accepting the intersection
of the languages recognized by two automata

Aj:(ze,ES,Xj,Qj, gaFijJanagijj)

for j = 1,2 on the same alphabet, satisfying the conditigha(d ¢) of Theorem 1. We
assume thaf); andQ- (respectivelyX; and X,) are disjoint and, when no confusion



can arise, we simply writéfor both labelling functiong; and/». We also assume that
the automatad; and.A; do not contain a trivial loop of the forrp, true, ¢, 0, p).

We define the automatos = (X., ¥, X,Q,Q°, F, R, I, ¢, A) designed to accept
L(A1) N L(A2) as follows.

— We setX = X; U X, U {z}, wherez is a new clock used to control if the time
elapsed in a state of is zero or not.
— Theset) C X, x Q1 x Q2 x {0,1,2} consists of all tuplega, p, g, 7) satisfying
® gl(p)7€2(Q) € {aa T} and
e i =1ifand onlyif ¢,(p) = ¢2(q) = a.
Note that, the conjunction of these two constraints impiies if the first compo-
nent isa = 7 then the last component mustbe- 1.
— For(a,p,q,i) € Q, we set
® g(aapvtbi) =a and[(aapvtbi) = Il(p) A IQ(q) ifi=1and
e la,p,q,i) =7andI(a,p,q,i) = I1(p) A I2(q) A z < 0 otherwise.

The intuitive idea behind the fourth component of the stafed is the following:

— Value 0 means that one of the automata is ready to perform signala # 7
and is waiting for the other to reach a state labelledith e-transitions and in-
stantaneously traversinglabelled states. If a synchronization is not possible on
signala, then the whole computation will not produce any accepfifigword of
the intersection,

— Value 1 means that the two automata emit the same signals,

— Value 2 means that the two automata were producing the sajnalsibut have
“lost” their synchronisation (due asttransition performed by one of them). As in
the case of value 0, they will try to re-synchronize. But thele computation can
still progress even if this synchronization is not possérigmore.

The transition relatiom\ consists osynchronousnoves where both automata progress
simultaneously and asynchronousoves where one automaton is idle while the sec-
ond one performs asttransition.

A synchronous move is not possible in a state of the féanp, ¢, 0) since a syn-
chronization is expected first. Consider two states, ¢,¢) and (a’,p’,¢’,i’) in Q
with ¢ # 0 andé’ # 2. For any two transition$; = (p,g,b,a,p’) € 4A; and
02 = (g, h,b,8,q") € Ax with b # ¢ if a = o/, we add inA the synchronous transition

gAh,b,aUpBU{z}
-

§ = (a,p,q,1) (a,p',q i)

and we seir;(0) = 0, for j = 1,2.

Consider now a stater, p, q,7) € Q. For any transitiod; = (p, g,¢,,p’) € 4
with 41 (p') € {a, 7} we add inA the asynchronous transition
5= (a,p,q,8) 222 (a0, g, 1)
wherei’ is updated so thdu, p’, ¢, ') is a legal state and the choice between values 0

and 2 is made according to the abstract description in Fi§oBmnally, if « = 7 then
i = 1 is the only possibility. Now, ifz # T we have the following cases:



— i =1if (') = £a(q

—4¢ =0ifi=0and ¢
been achieved,

—i'=2if i #0and {:(p’) = 7 orlz(q) = 7): synchronization om has been lost.

) = a: synchronization om is active,
1(p") = 7 orés(q) = 7): synchronization o has not yet

We setr (6) = d; andm2(d) = . We proceed symmetrically for asynchronous transi-
tions of A,.

In the construction above, the subset of states with firstpmmanta is designed
to handle maximal blocks of the foraf'. This part of the intersection is represented
for a # 7 by the abstract automaton in Figure 5. Note that all the ttians are asyn-
chronoug-transitions which reset the cloek

Fig. 5.Handling blocksa?, for a # 7

Since we have assumed thdt and.4, do not contain a trivial loop of the form
(p, true,¢,, p), the projectionsr, (§) for j = 1,2 are well-defined. Indeed, if =
((a,p1,p2,%),9,b,a U{z},(d',q1,92,i')) € A theng is of the formg; A g2 where
g; involves clocks ofA4; only. Hence, if we leth; = a N X; we getr;(9) = e if
(9j = true andb = ¢ anda; = 0 andg; = p;) andn;(d) = (p;, 95,0, a;,q;)
otherwise.

A path P of A can be seen as a sequeng®, - - - of transitions inA. Clearly, the
projectionr; (P) = m;(61)m;(d2) - - - is a path ofA4,.

The initial and final states are defined®y = Q@ N (X x QY x QY x {0,1}) and
F=Qn (X x Fy x F5 x{1,2}). We will not define the repeated sta@explicitely.
Instead, an infinite ru® of .4 will be accepting if and only if each projection (P)
is infinite and accepting it!;. It is well-known how to turn this intersection of Biichi
conditions into a Biichi condition using some addition&éimation [13]. For the sake
of simplicity, we skip this easy construction here.

Note that, since conditiong) and(f) hold for.4; and.A,, they also hold forA.

Examples The next easy examples illustrate the construction and skéulness of
the additional componentsandi. Consider the two automats, andB- in Figure 4,
which have only finite runs and thus satisfy conditign We could easily ensure that
they also satisfy the conditioff) by adding invariants in the final states, which is
omitted for simplicity. Recall that in our model, the signélis equivalent to the empty
word . Consequently, the language accepteddbys {a? 7%b% | dy,ds > 0,dy >



0} U {a®1b% | dy,d3 > 0} while By accepts{r®a?2b?s | d; > 0,da,d3 > 0} U
{a®2b% | dy,d3 > 0}. HenceL(By) N L(Bz) = {a®b% | dy,d3 > 0}. A word is in
the intersection (if and) only if the states labeledrbgre crossed instantaneously by an
accepting run.

The automator3 constructed for the intersection is represented in Figurille
transitions are-transitions which reset the cloek

a7p27q170 a7p37q170 a7p37q270

a7p17q170

7, 2<0 7, 2<0 T, 2<0 7, 2<0
Y Y
a,pi1,qz,1 a,p2,q2,1 a,ps,q2,2 Handling signak
a a 7, 2<0
Y
b, ps,q3,0 b, pa, g3, 1 Handling signab
7, 2<0 b

Fig. 6. Resulting automatos

We now modify automat&; andB3; into 3] andB3}, by adding loops, as represented
in Figure 7. In this case, the words in the intersection mayaia factors of the form
74, as can be seen on the resulting automatoim Figure 8.

. . 3 . .
g
. g . .
3

Fig. 7. Automatai3; andB

We insist that the construction relies on conditigin. Consider again the two au-
tomataAs and.A, in Figure 1. Condition(}) does not hold for4,, because:! is ac-
cepted by an infinite run. We hav A3) N £(A4) = {a'}. Note that the construction
given in the proof of Theorem 2 would fail in this case sinosduld yield the automa-
ton A in Figure 9. We haveC(.A) = () for two reasons. Firstl contains no final state
and it admits also no accepting infinite run since the firsggmtoon of the run cannot be



a7p37q170 a7p37q270

7, 2<0

a7p27q170
7, 2<0

a7p17q170
7, 2<0

Y Y

|
|
|
|
|
|
|
a7p17q271 a7p27q271 ‘ l ‘Tap37q171
a | T
|
|
|

a7p17q172
7, 2<0

b7p37q170
T, 2<0

b7p47q170
7, 2<0

b7p47QB71
b

b7p37q370
7, 2<0

Fig. 8. Resulting automatofs’

A: a,p1,qi,1 E,{Z}

Fig. 9. Resulting automatonl

infinite. This is not actually the main problem. We could hdefined A so that a path
P is accepting if and only if both projections (P) andws(P) are accepting (finite or
not). Then the argument above does not apply anymore. Sileuld havel (A) =
due to the invariany < 1 and the guard: > 1.

Remark 3.If we consider signal-event automata wher#ransitions are not allowed,
the treament of the intersection becomes much simplerehdbe intersection of two
SE-automata without-transitions can be done in a classical way, i.e., as a ptarfuc
automata and a suitable treatment of Buchi conditions.

5 Conclusion

We proposed in this paper a construction for the interseatiotwo signal-event au-
tomata in the most general framework, working on finite arfidite signal-event words
and taking into account signal stuttering, unobservatilizero-duratiorn-signals and
Zeno runs.

While constructions were proposed in the literature foramtant particular cases, it
is the first time, up to our knowledge, that the general caBedded. There has been in
the area of timed automata some examples of subtly erroremssructions (e.g. with



respect to forward analysis [8]) which should convince uthefimportance to publish
complete and proved constructions.

Moreover, it turns out that the closure of signal-event m#ta under intersection,
and the normal form achieved in Theorem 1, are crucial toysthd closure ofSE-

languages recognized by such automata under timed suiost#(i6].
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