Abstract
We address the problem of segmenting out moving objects from video. The majority of current approaches use only the image motion between two consecutive frames and fail to capture regions with low spatial gradient, i.e., low textured regions. To overcome this limitation, we model explicitly: i) the occlusion of the background by the moving object and ii) the rigidity of the moving object across a set of frames. The segmentation of the moving object is accomplished by computing the Maximum Likelihood (ML) estimate of its silhouette from the set of video frames. To minimize the ML cost function, we developed a greedy algorithm that updates the object silhouette, converging in few iterations. Our experiments with synthetic and real videos illustrate the accuracy of our segmentation algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguiar, P., Jasinschi, R., Moura, J., Pluempitiwiriyawej, C.: Content-based image sequence representation. In: Reed, T. (ed.) Digital Video Processing, ch. 2, pp. 7–72. CRC Press, Boca Raton (2004)
Li, H., Lundmark, A., Forchheimer, R.: Image sequence coding at very low bitrates: A review. IEEE Trans. on Image Processing 3(5) (1994)
Diehl, N.: Object-oriented motion estimation and segmentation in image sequences. Signal Processing: Image Communication 3(1) (1991)
Jasinschi, R., Moura, J.: Content-based video sequence representation. In: Proc of IEEE Int. Conf. on Image Processing, Washigton D.C., USA (1995)
Sawhney, H., Ayer, S.: Compact representations of videos through dominant and multiple motion estimation. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(8) (1996)
Jasinschi, R., Moura, J.: Generative Video: Very Low Bit Rate Video Compression. U.S. Patent and Trademark Office, S.N. 5, 854, 856 (1998)
Tao, H., Sawhney, H., Kumar, R.: Dynamic layer representation with applications to tracking. In: Proc. of IEEE Int. Conf. on Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina (2000)
Jojic, N., Frey, B.: Learning flexible sprites in video layers. In: Proc. of IEEE Int. Conf. on Computer Vision and Pattern Recognition, Hawaii (2001)
Dubuisson, M.P., Jain, A.: Contour extraction of moving objects in complex outdoor scenes. Int. Jounal of Computer Vision 14(1) (1995)
Bouthemy, P., François, E.: Motion segmentation and qualitative dynamic scene analysis from an image sequence. Int. Jounal of Computer Vision 10(2) (1993)
Irani, M., Peleg, S.: Motion analysis for image enhancement: Resolution, occlusion, and transparency. Journal of Visual Communications and Image Representation 4(4), 324–335 (1993)
Irani, M., Rousso, B., Peleg, S.: Computing occluding and transparent motions. Int. Journal of Computer Vision 12(1) (1994)
Aguiar, P., Moura, J.: Maximum likelihood estimation of the template of a rigid moving object. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134. Springer, Heidelberg (2001)
Aguiar, P., Moura, J.: Figure–ground segmentation from occlusion. IEEE Trans. on Image Processing 14(8) (2005)
Bergen, J., et al.: Hierarchical model-based motion estimation. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588. Springer, Heidelberg (1992)
Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Prof. of IEEE Int. Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, USA (1985)
Morel, J., Solimini, S.: Variational Methods in Image Segmentation. Birkhäuser, Boston (1995)
Malladi, R., Sethian, J., Vemuri, B.: Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence 17(2), 158–175 (1995)
Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. Journal of Computer Vision 1(4), 321–331 (1988)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic snakes. Int. Journal of Computer Vision 22, 61–79 (1997)
Chan, T., Vese, L.: Active contours without edges. IEEE Trans. on Image Processing 10(2), 266–277 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aguiar, P.M.Q., Miranda, A.R., de Castro, N. (2006). Occlusion-Based Accurate Silhouettes from Video Streams. In: Campilho, A., Kamel, M.S. (eds) Image Analysis and Recognition. ICIAR 2006. Lecture Notes in Computer Science, vol 4141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867586_74
Download citation
DOI: https://doi.org/10.1007/11867586_74
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44891-4
Online ISBN: 978-3-540-44893-8
eBook Packages: Computer ScienceComputer Science (R0)