Skip to main content

Occlusion-Based Accurate Silhouettes from Video Streams

  • Conference paper
Image Analysis and Recognition (ICIAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4141))

Included in the following conference series:

  • 1512 Accesses

Abstract

We address the problem of segmenting out moving objects from video. The majority of current approaches use only the image motion between two consecutive frames and fail to capture regions with low spatial gradient, i.e., low textured regions. To overcome this limitation, we model explicitly: i) the occlusion of the background by the moving object and ii) the rigidity of the moving object across a set of frames. The segmentation of the moving object is accomplished by computing the Maximum Likelihood (ML) estimate of its silhouette from the set of video frames. To minimize the ML cost function, we developed a greedy algorithm that updates the object silhouette, converging in few iterations. Our experiments with synthetic and real videos illustrate the accuracy of our segmentation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguiar, P., Jasinschi, R., Moura, J., Pluempitiwiriyawej, C.: Content-based image sequence representation. In: Reed, T. (ed.) Digital Video Processing, ch. 2, pp. 7–72. CRC Press, Boca Raton (2004)

    Google Scholar 

  2. Li, H., Lundmark, A., Forchheimer, R.: Image sequence coding at very low bitrates: A review. IEEE Trans. on Image Processing 3(5) (1994)

    Google Scholar 

  3. Diehl, N.: Object-oriented motion estimation and segmentation in image sequences. Signal Processing: Image Communication 3(1) (1991)

    Google Scholar 

  4. Jasinschi, R., Moura, J.: Content-based video sequence representation. In: Proc of IEEE Int. Conf. on Image Processing, Washigton D.C., USA (1995)

    Google Scholar 

  5. Sawhney, H., Ayer, S.: Compact representations of videos through dominant and multiple motion estimation. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(8) (1996)

    Google Scholar 

  6. Jasinschi, R., Moura, J.: Generative Video: Very Low Bit Rate Video Compression. U.S. Patent and Trademark Office, S.N. 5, 854, 856 (1998)

    Google Scholar 

  7. Tao, H., Sawhney, H., Kumar, R.: Dynamic layer representation with applications to tracking. In: Proc. of IEEE Int. Conf. on Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina (2000)

    Google Scholar 

  8. Jojic, N., Frey, B.: Learning flexible sprites in video layers. In: Proc. of IEEE Int. Conf. on Computer Vision and Pattern Recognition, Hawaii (2001)

    Google Scholar 

  9. Dubuisson, M.P., Jain, A.: Contour extraction of moving objects in complex outdoor scenes. Int. Jounal of Computer Vision 14(1) (1995)

    Google Scholar 

  10. Bouthemy, P., François, E.: Motion segmentation and qualitative dynamic scene analysis from an image sequence. Int. Jounal of Computer Vision 10(2) (1993)

    Google Scholar 

  11. Irani, M., Peleg, S.: Motion analysis for image enhancement: Resolution, occlusion, and transparency. Journal of Visual Communications and Image Representation 4(4), 324–335 (1993)

    Article  Google Scholar 

  12. Irani, M., Rousso, B., Peleg, S.: Computing occluding and transparent motions. Int. Journal of Computer Vision 12(1) (1994)

    Google Scholar 

  13. Aguiar, P., Moura, J.: Maximum likelihood estimation of the template of a rigid moving object. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Aguiar, P., Moura, J.: Figure–ground segmentation from occlusion. IEEE Trans. on Image Processing 14(8) (2005)

    Google Scholar 

  15. Bergen, J., et al.: Hierarchical model-based motion estimation. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588. Springer, Heidelberg (1992)

    Google Scholar 

  16. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Prof. of IEEE Int. Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, USA (1985)

    Google Scholar 

  17. Morel, J., Solimini, S.: Variational Methods in Image Segmentation. Birkhäuser, Boston (1995)

    Google Scholar 

  18. Malladi, R., Sethian, J., Vemuri, B.: Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence 17(2), 158–175 (1995)

    Article  Google Scholar 

  19. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  20. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. Journal of Computer Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  21. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic snakes. Int. Journal of Computer Vision 22, 61–79 (1997)

    Article  MATH  Google Scholar 

  22. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aguiar, P.M.Q., Miranda, A.R., de Castro, N. (2006). Occlusion-Based Accurate Silhouettes from Video Streams. In: Campilho, A., Kamel, M.S. (eds) Image Analysis and Recognition. ICIAR 2006. Lecture Notes in Computer Science, vol 4141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867586_74

Download citation

  • DOI: https://doi.org/10.1007/11867586_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44891-4

  • Online ISBN: 978-3-540-44893-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics