Skip to main content

Object Categorization Using Kernels Combining Graphs and Histograms of Gradients

  • Conference paper
Image Analysis and Recognition (ICIAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4142))

Included in the following conference series:

  • 1512 Accesses

Abstract

This paper presents a method for object categorization. This problem is difficult and can be solved by combining different information sources such as shape or appearance. In this paper, we aim at performing object recognition by mixing kernels obtained from different cues. Our method is based on two complementary descriptions of an object. First, we describe its shape thanks to labeled graphs. This graph is obtained from morphological skeleton, extracted from the binary mask of the object image. The second description uses histograms of oriented gradients which aim at capturing objects appearance. The histogram descriptor is obtained by computing local histograms over the complete image of the object. These two descriptions are combined using a kernel product. Our approach has been validated on the ETH80 database which is composed of 3280 images gathered in 8 classes. The results we achieved show that this method can be very efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and the smo algorithm. In: ICML 2004: Proceedings of the twenty-first international conference on Machine learning, p. 6. ACM Press, New York (2004)

    Chapter  Google Scholar 

  2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Haussler, D. (ed.) 5th Annual ACM Workshop on COLT, Pittsburgh, PA, pp. 144–152. ACM Press, New York (1992)

    Google Scholar 

  3. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recogn. Lett. 19(3-4), 255–259 (1998)

    Article  MATH  Google Scholar 

  4. Beucher, S., Lantuejoul, C.: On the use of the geodesic metric in image analysis. Journal of miscrocopy 121(1), 39–49 (1981)

    Google Scholar 

  5. Cristianini, N., Shawe-Taylor, J.: Introduction to Support Vector Machines. Cambridge Univeristy Press, Cambridge (2000)

    Google Scholar 

  6. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Schmid, C., Soatto, S., Tomasi, C. (eds.) International Conference on Computer Vision and Pattern Recognition, June 2005, vol. 2, pp. 886–893 (INRIA Rhone-Alpes, ZIRST-655, av. de l’Europe, Montbonnot-38334) (2005)

    Google Scholar 

  7. Eichhorn, J., Chapelle, O.: Object categorization with svm: kernels for local features. Technical report, MPIK (July 2004)

    Google Scholar 

  8. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(4), 377–388 (1996)

    Article  Google Scholar 

  9. Darrell, T., Grauman, K.: The pyramid match kernel: Discriminative classification with sets of image features. In: Proceedings of the IEEE International Conference on Computer Vision, Beijing, China (2005)

    Google Scholar 

  10. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proceedings of the Twentieh International Conference on Machine Learning (2003)

    Google Scholar 

  11. Borgwardt, K.M., Ong, C.S., Schnauer, S., Vishwanathan, S.V.N., Smola, A.J., Kriegel, H.-P.: Protein function prediction via graph kernels. Intelligent Systems in Molecular Biology (2005)

    Google Scholar 

  12. Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: Rangarajan, A., Figueiredo, M.A.T., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683. Springer, Heidelberg (2003)

    Google Scholar 

  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Di Ruberto, C.: Recognition of shapes by attributed skeletal graphs. Pattern Recognition 37(1), 21–31 (2004)

    Article  Google Scholar 

  15. Sharvit, D., Chan, J., Tek, H., Kimia, B.: Symmetry-based indexing of image databases (1998)

    Google Scholar 

  16. Shashua, A., Gdalyahu, Y., Hayon, G.: Pedestrian detection for driving assistance systems: Single-frame classification and system level performance. In: Proceedings of IEEE Intelligent Vehicles Symposium (2004)

    Google Scholar 

  17. Vapnik, V.: Statistical Learning Theory. Wiley, Chichester (1998)

    MATH  Google Scholar 

  18. Demirci, M.F., Shokoufandeh, A., Dickinson, S.J., Keselman, Y., Bretzner, L.: Many-to-many feature matching using spherical coding of directed graphs. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 322–335. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suard, F., Rakotomamonjy, A., Bensrhair, A. (2006). Object Categorization Using Kernels Combining Graphs and Histograms of Gradients. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2006. Lecture Notes in Computer Science, vol 4142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867661_3

Download citation

  • DOI: https://doi.org/10.1007/11867661_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44894-5

  • Online ISBN: 978-3-540-44896-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics