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Abstract. This paper presents a method for object categorization. This problem
is difficult and can be solved by combining different information sosirsech

as shape or appearance. In this paper, we aim at performing obgegnition

by mixing kernels obtained from different cues. Our method is basetivon
complementary descriptions of an object. First, we describe its shaplestt@n
labeled graphs. This graph is obtained from morphological skeletdrgotsd
from the binary mask of the objectimage. The second description istegfams

of oriented gradients which aim at capturing objects appearance. TiogHais
descriptor is obtained by computing local histograms over the completeeimag
of the object. These two descriptions are combined using a kernel girddur
approach has been validated on the ETH80 database which is comp@aaDo
images gathered in 8 classes. The results we achieved show that thisloatho
be very efficient.

1 Introduction

Object categorization problem is difficult and still pretseopen issues. Many researches
have focused on this topic and yet it has been solved onlyddrqular situations. An
object categorization system contains two main partst,F@ature extraction has to be
the most exhaustive object representation in order to kesepmum information con-
cerning the object. The second part consists of a classifietvshould be able to learn
the category of an object from this representation and th@nedict the most correctly
as possible the category of a new unseen object.

Representing a static object can be done along two waysdlidtjally and locally.
The first way consists in representing the general shape obpatt. The other way
can bring information about the object appearance for aag&odiscrimination. Then
for a categorization purpose these two global representatiave to be appropriately
combined with an objective of perfomance enhancement. Coefar mixing these
representations has been presented in Leibe et al. [12]sdvasied on a decision tree.
Another way of combination resides in the properties of thi®&IRlassifier, which can
deal with mixture of kernels [5, 1].

Recently, there has been a growing interest around objpotsentation based on
graphs. One major interest of graph resides in its propehiginkeeps the object shape
topology. This property has been used in different methodobject categorization



using graphs : [14, 15, 18, 11], where graph classificatiaclgeved by measuring their
similarity [14, 15].

The result of similarity measure obtained from graph maglalgorithms [3, 14, 8]
is a metric. This metric is then used to find the most similgectyor to cluster objects,
according to the distance between them. So that efficienthyest methods depends on
the quality of the similarity measure. A weakness of grapkchiag algorithms is that
they essentially deal with labelled graphs for which lataeésa single numerical value.
On top of that, information is mainly brought on edges andlyaon vertices [14, 18].

Another way to compare or to classify graphs is to use kerrethods and the
so-called kernel trick.

Hence, measuring graph similarity can be addressed bydmnirsj kernels func-
tion on graphs. In [10], Kashima et al. defined a kernel fuorcfor labeled graphs. This
function can be interpreted as an inner product on two gragiftained by comparing
edges and vertices that have been crossed during randors walthe graphs. Then
a major particularity of this kernel is the use of kernelswesn vertices and edges.
It means that labels can be complex structures, like vechistograms or set of his-
tograms, instead of a single real value, which is the casenfist of graph matching
algorithms.

Another representation of an object consists in descrithingbject appearance [9,
12, 7]. Recents works have shown that efficient and robustappce-based cues can
be obtained from histogram of oriented gradient (HOG) inge®[13]. One advantage
of this method is to bring information on both object appeaeand object contours.
This method is also an answer to the variability problemgeirepresenting an image
thanks to histogram of gradient is very robust for scalerniavece, or different lighting
conditions.

Recently, Dalal and Triggs have further developed this afdastogram of gradient
and have achieved excellent recognition rate of human tietein images [6]. This
work pointed out the problem of variability, and proposeceéitient way to solve it.

In this paper we present a method for object categorizatsomgua combination of
representations based on kernels and a SVM classifier [1&§Hé&tided to take advan-
tage of graph properties for a global shape representatiamabject. However, instead
of using graph matching algorithms, we introduce the useraply kernels for object
recognition problem. The object shape representationritbated with an appearance
representation based on local histogram of gradients. We &no appropriate kernel
that mixes kernels from these two representations by a ptodihe resulting kernel
is then fed into a SVM classifier for categorization. Our pagiens at analysing the
categorization performance of the overall approach.

This paper is organized as follows. The first section 2.1gmssour method to
design a graph. Starting from an image, the morphologicalesén is obtained thanks
to the image binary mask. When the graph structure is completeadd some labels
on both vertices and edges, with regards of the original enddpe second part 2.2
presents the HOG descriptor. The third part 2.3 preserdgfijothe SVM classifier used
for multiclass. Next, we describe the graph kernel of Kashitvd. Finally, we depict
some results in section 3. The test has been accomplisheldeoBTtH-80 database,
which has already been used in different approaches tadhestefficiency [9, 18, 12].



2 Method description

2.1 Graph

In this part, we will describe briefly our method used to tfan®s an image into a graph.
The aim is to keep the main information contained in a shdya,i$ to say geometric
properties or topologic properties. This last propertyastipularly interesting in our
case. If a shape is made of a set of sub-parts, the skeletopraskerve the connectivity
and the shape arrangement.

Graph designing As we mentioned before, we tackle the problem of object reitimn
represented with an image. In our case, one image corresporadsingle object. The
first step consists in extracting the morphological skeldtom the binary mask. We
used the same method which is described in [14].

A skeleton can be defined as a line representation of an oliettis to say it is
one-pixel large and placed around the middle of the objegtmaserves the geometry
and topology object

Given the definition of Lantuejoul [4], a skeleton subset bfack and white image
Si(A) is defined as Si(A) = E(A,kB) — [E(A,kB)oB]k = 0,1,...K whereB
is a structuring element, anfd is the largest value of before the sef),(A) becomes
empty. The skeleton is then the union of the skeleton subsétd) = UX_ S, (A)

Once the skeleton is obtained, we can build the graph. A g&ji$ made up of
vertices and edges = (V, E) . A vertex is a junction between different edges. We can
differentiate two types of vertices : nodeg,(), which are a junction of many edges and
vertices which are edge ending;].

To build the graph we look at the type of each skeleton pixehd pixel has only one
neighbor, this pixel is an edge ending. If the pixel neiglgprorresponds to a defined
010
mask, for exampl<1 1 1) , then this pixel is defined as a vertex.
000

The next step consists in searching paths between verfibesaim is to search, for
each vertex, all vertices directly linked by a branch of tkelston. These vertices are
found by walking along the skeleton pixels. The path betwaenvertices should not
contain another vertex.

Graph labeling One important aspect in our work, is that we deal with attedu
graphs. It means that graph components are labeled. A plariiy is that we can have
a vector of structured data labels for each component, sinwireg to kernel methods
we have no limitation when we compare two graphs (see 2.4).

— For a vertex, for instance, we can compute the followinglsb

e node coordinates,

e size of the structured element at node,

e color mean and variance of the region described by the streatielement.
— For edges :

e length,



Cup

Image

Skeleto - T

Graph

Fig. 1. Example of objects coming from the database ETH-80, their skeletorthairdyraph.

e orientation,

e area defined by the intersection of all structured elemdatsd on the edge,

e luminosity, colour mean, variance and texture charadiesighomogeneity,
dissimilarity, contrast, entrophy, energy) of the regi@fining above.

As we can see, we could obtain various information conceralrape. Some fea-
tures are able to describe the shape topology, like edgagHeorientation and area.
We could complete them with information about the shapeutext

2.2 Histograms of Oriented Gradients

In the context of object recognition, the use of edge origmaistogram has gain pop-
ularity [16, 6]. However, the concept of dense and localdgstm of oriented gradients
(HOG) is a method introduced by Dalal et al.[6]. The aim oftsotethod is to describe
an image by a set of local histograms. These histograms cmenrences of gradient
orientation in a local part of the image. In this work, in artie obtain a complete de-
scriptor of an image, we have computed such local histogmmgsadient according to
the following steps :

1. compute gradients of the image,
2. build histogram of orientation for each cell,
3. normalize histograms within each block of cells.

Gradient computation The gradient of an image has been simply obtained by filtering
it with two one-dimensional filters :

— horizontal :(-101)
— vertical :(—10 1)T



Gradient could be signed or unsigned. This last case idiggstly the fact that the
direction of the contrast has no importance. In other wondswould have the same
results with a white object placed on a black background,pamed with a black object
placed on a white background. In our case, we have considereshsigned gradient
which value goes from to .

The next step is orientation binning, that is to say to comphe histogram of
orientation. One histogram is computed for each cell adngroh the number of bins.

Fig. 2. This figure shows the gradient computation of an image. (left) is the otigizge, (mid-
dle) shows the direction of the gradient, (right) depicts the original imagerding to the gradi-
ent norm.

Fig. 3. This figure shows the histograms of gradient orientation for (left) 4 l§mgldle) 8 bins
(right) 16 bins.

Cell and block descriptors The particularity of this method is to split the image into
different cells. A cell can be defined as a spatial region dilkegjuare with a predefined
size in pixels. For each cell, we then compute the histogragraxdient by accumu-
lating votes into bins for each orientation. Votes can begiveid by the magnitude of
a gradient, so that histogram takes into account the impoetaf gradient at a given
point. This can be justified by the fact that a gradient oegat around an edge should
be more significant than the one of a point in a nearly unifaggian. Some examples
of histogram obtained for the square region given in the feiddage of figure 2 are
shown in figure 3. As expected, the larger the number of binthésmore detailed the
histogram is.

Block Normalization When all histograms have been computed for each cell, we can
build the descriptor vector of an image concatenating alidgrams in a single vector.
However, due to the illumination variations and other Jaitigy in the images, it is
necessary to normalize cells histograms. Cells histog@mmsocally normalized, ac-
cording to the values of the neighboured cells histograrhs. formalization is done
among a group of cells, which is called a block.



A normalization factor is then computed over the block aridhistograms within
this block are normalized according to this normalizatiactér. Once this normaliza-
tion step has been performed, all the histograms can be ratad in a single feature
vector.

Different normalization schemes are possible for a veétocontaining all his-
tograms of a given block. The normalization factof could be obtained along these
schemes:

— none : no normalization is applied on the celig,= 1.

. v
— L1-norm:nf = VI Te
- . S /A
— L2-norm :nf = e

¢ is a small regularization constant. It is needed as we someativaluate empty gradi-
ents. The value of has no influence on the results.

Note that according to how each block has been built, a histogrom a given
cell can be involved in several block normalization. In ttése, the final feature vector
contains redundant information which has been normalineddifferent way. This is
especially the case if blocks of cells have overlapping.

2.3 SVM Classifier

Support Vector Machine The Support Vector Machines classifier is a binary classi-
fier algorithm that looks for an optimal hyperplane as a dexigunction in a high-
dimensional space [2,17,5]. Thus, consider one has anidata set{x;, v} €

X x {—1,1} wherex;, are the training examples ang the class label. At first, the
method consists in mapping, in a high dimensional space owing to a functién
Then, it looks for a decision function of the formyf(x) = w - &(x) + b and f(x) is
optimal in the sense that it maximizes the distance betweenearest poink(x;) and

the hyperplane. The class labelxfs then obtained by considering the signdk).
This optimization problem can be turned in this followingean

1 2
min — ||wW +C E 1

under the constraintk, yi f(Xx) > 1 — &, where the, are the slack variables. The
solution of this problem is obtained using the Lagrangiseot and it is possible to
show that the vectaw is of the form :

W= ajy®(x) 2)
k=1

whereq; is the solution of the following quadratic optimization ptem :

m 1 m
max W (a) = > k- 3 > akaryiyeK (X, Xe) ®3)
k=1 ot
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subject to)_;" | yxay, = 0 andVk, 0 < ai, < C, whereK (X, X¢) = (D(X,), B(X¢)).
According to equation (2) and (3), the solution of the SVMhdemn depends only on
the Gram matrixK'. Hence, in our case, the classification with SVMs only needs a
kernel, which is, in our case, a combined kernel.

Kernels combination In our method, we use a combination of kernels [5, 1]. A kernel
can be defined as a combination of positive-definite kernels.

Let K1 and K5 be kernels ove®” x X, 0 < A < 1, a > 0, the following functions
are kernels :

— K(z,y) = AK1(2,y) + (1 = \)Ka(z,y)
— K(x,y) = aKi(z,y)
- K(m,y) = K1(I’,y) X Kz(l‘,y)

In our case, we combine a graph kernel with a linear kernelpeted from the
HOG datas thanks to a product.

2.4 Graph Kernel

We use the inner product between graphical representatiassd on Kashima et al.
paper’s [10]. The idea is to compare two label sequenceggtemby two synchronized
random walks on the two graphs. This formula gives the commparof each vertices
values and edges values, which are encountered for eachgtatting from each vertex
of graphs, weighted by the probability to cross the vertaras the edges. This formula
shows that computation could be exhaustive and test evessilje path combination.

K(G,G") =Y Y K.(h,h)x p(h,G) x p(h',G")
h h'

! (4)
K.(h, 1) = Ky (hy, hy) [ Ke(haia, by o) x Ky(haiy, b, 1)
=2

with K, (h, h'), the kernel function defined for verticek,. (h, h'), the kernel function
defined for edge:(h, G) is the path probability for a pathin graphG. This probabil-
ity is function of the probability to start at a given vertaxdathe transition probability
between two vertices.

The detailed computation @€ (G, G’) is given in the paper of Kashima and al. [10].

The complexity of this computation @ ((|G||G’[)?), with |G| the number of nodes
in graphG. For this reason the number of vertices in each graph have &slsmall as
possible.

The graph kernel suggests that a kernel between verticeskardel between edges
have to be defined. In our case, we have chosen to use a clasgisaian kernel since
nodes and edges are labeled with vectorial values :

N

wherec is the bandwidth of the gaussian kernel.



Note that the graph kernel depends only on the probabibiysition between ver-
tices and kernels between vertices and kernel between €fgesneans that the label
information of edges and vertices can be richer than it ihatresent time. In fact,
since we only need an inner product values, labels can be wetwarial data which
admit a kernel.
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Fig. 4. Value of the inner product between a square graph and a trapezepid gith the graphs
coming from the transform of a square to a triangle.

In order to evaluate the pertinence of this method, we havepated values of
the inner product between the graph of a square with grapbgjetts coming from
the progressive transformation of a squamgto a triangle 4). Results are shown on
figure 4. Since the inner product is normalized, it can be icened as a distance :

d(x,y)? = (z,2) + (y, ) — 2(x,y) = (&, 2) + (y,9) — 2 (z,y) = 2(1 = (2,3)) (6)
We conclude from that :

— when we compare the inner produstG(m), G(m)) with K(G(m),G(A)) and
K(G(m),G(m)), we can see that the triangle graph seems to be closer ofiilaessq
graph than the trapezoid graph, but the trapezoid graphssezive closer of the
square graph. This can be explained by the fact that the gi&sguare and triangle
are adjacent, compared with the graph of trapezoid. In fesghezoid graph has a
central branch which is not present in the other graphs. &tiimgle graph differs
from square graph only by one missing branch.

— We also can notice a symmetry concerning the trapezoidtrésour example, the
triangle and the square are equally placed from the cemndiadroid.

— the result is symmetricK (G, G2) = K (G2, G).

Compared with graph matching algorithms, [3, 14, 8], thehméfproposed by Kashima
has a great interest. It can be used by a SVM classifier, siowe similarity mea-
sures have not the required properties, in particular thesstry. This method can also
deal with complex structures as labels, when other metholysieat single numerical
value.

3 Results

We now have to evaluate the efficiency of this method. Theiseatcomplished on
a complete database : ETH-86t ( p: // www. mi s. i nf or mati k. t u- dar nst adt .



de/ Resear ch/ Proj ect s/ cat egori zati on/ ). This base contains 80 objects, dis-
patched over 8 classes : apple, pear, cow, dog, horse, ayummoatoe. Each object has
been captured from different points of view to produce 4ivgiéor each object.

Our SVM is used for multi-class, with one-against-one méthee trainec{%)
binary classifiers fon classes. For classification, a vote is established foradisifiers.
The tested data will be labeled as the class that as more. vidiesweight for miss-
classified points C (1) was established at 1000. The follgwasults are given for a
leave-one-object-out crossvalidation method. We remdveandges corresponding to
the same object at a time. The learning set is composed ofrathining objects, and
we classify each view of the tested object. To evaluate tfieiexicy of the different
methods, we first studied independently the graph kernette#lOG method.

3.1 Graph kernel

The aim of graph is mainly to discriminate object shape. Tthii$ condition, we choose
to use the labels which are pertinent for a shape descriptiather words, we conserve
labels which give information about the object shape togypldVe retain the following
labels :

— for vertices : size of structured element, coordinates,
— for edges : orientation, length, strength, area,

Each characteric was normalized to have a mean equal to (g atahdard deviation
equal to 1.

We also evaluate the influence of graph size by limiting thenler of nodes for
each graph. Results are shown on the table below :

number of nodes| 5 10 15 20 25 30
good recognition rat&5,2%79,4%80,5%82,1%482,9%83,8%

Due to the complexity of the computation (2.4), we limit themtber of vertices
to 30 per graph. We obtained a good recognition rate of 83;B8is result can be
explained by the fact that classes dog, horse and cow argg$trmixed as it is shown
on the confusion matrix (figure 5). One reason resides inkbkton designing, which
is too similar for these objects.

3.2 HOG

As we saw in section 2.2, the HOG descriptor actually invelseany parameters. To
tune these parameters correctly, we completed a test toateabdptimal set of parame-
ters, retrieve this following set :

— image size 96 x 96 pixels,

— size of cell 4 x 4 pixels,

— size of block 2 x 2 cells,

— overlap of blocks : 1 cell,

— normalization factor for block : L2,
— number of bins for histogram : 4.
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It should be noticed that the majority of these parameters have a smadinoéulike block
overlap, size of block, number of bins for histogram, and results asel&an 5% better compared
to non-optimal set of parameters. On the contrary, the normalizatitor facd size of cell have
more influence on the result which are up to 10% better.

The rate obtained with the HOG descriptor is up to 90%. The errors (figwtdl@ome from
the mix between classes dog, horse and cow. Compared with the grépddytbe HOG method
uses texture information, which enables us to distinguish more easily soded objects like
apple and tomatce.
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Fig. 5. Left :Results obtained for the HOG Kernel, with leave-one-object-owgsuaidation test.
Good recognition rate : 90,1%. Right :Results obtained for the GrapheKemith leave-one-

object-out crossvalidation test. Good recognltlon rate 83, 8%
"z

EEEE E
> 1) -l-

Fig. 6. Left : misclassified object with HOG method. Right : misclassified objects gigph
method.

3.3 Kernel combination

We notice a certain complementarity between these methods, since sormis abgebadly dis-
criminated by a method, but well recognized with the other.

We now describe the final test realized over the complete database nvdneokernels with
aproduct K (z,y) = Kroa(z,y) X Kgrapn(z,y).

Each kemelK ;0 andK .., was normalized previouslyk,, (z, y) = k(@,y)

VE(z,2)Xk(y,y)
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Fig. 7. Results obtained for the combined kernel, with Fig.8. Examples of miss-
leave-one-object-out crossvalidation test. Recognition classified objects for com-
rate : 94,1%. plete test.

Figure 7 shows results for this test, which gives 94,1% of good recognitio

We can compare our results with other methods tested on the same dalalagg Leibe
and Schiele uses 7 classifiers in an optimal-decision tree. They obtai#edf@®od recognition
rate for a leave-one-object-out crossvalidation method. Results ameazable, but their method
depends on the classes used for the classification, and may not Hecieatefvith additional
classes. In our case, we can add other categories, without redefarimgletely our classification
method.

In [18], results are given for a leave-one-image-out crossvalidatiethod for only 32 objects
(4 from each class). This query method gives a recognition rate of 8b&tr case, we test our
method over the complete database. Moreover, we remove completabyeat, no image of the
tested object was present in the learning set.

4 Conclusion

This paper presents a method for object categorization. The aim is ta depiges thanks to
labeled graphs and histograms of oriented gradients.

The first representation is a labeled graph, which enables us to degswigbal shape of
an object. The second representation is based on histograms of ogeatiehts, which brings
more information concerning the appearance of the object. A graplelkierobtained by random
walk on graphs, and we combine this kernel with a linear kernel obtamedfOG descriptors.
We combined these kernels to use them with the SVM classifier.

The advantage of this method is to combine two kinds of representationsegodae an
object. Using a classifier like SVM is well adapted to this combination which lgié@aproves
recognition performance, compared when only one representatiseds u

A complete test of this method on the ETH-80 database has proved thatpné=ah is very
promising, with 94% of good recognition rate for a leave-one-objectxmssvalidation test. This
result proved that our method is efficient compared with existing metfid®j4.8]. Our results
could also be improved by combining additional object representations.

We have also some perspectives to improve this method. First, we woutd likegrate his-
tograms into the graph, and define a kernel for the vertices which déalshese histogramms.
Another point resides in using multiple kernels. This point could help us toaveclassification
results.
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