Skip to main content

A Symbolic-Numeric Approach for Solving the Eigenvalue Problem for the One-Dimensional Schrödinger Equation

  • Conference paper
Book cover Computer Algebra in Scientific Computing (CASC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4194))

Included in the following conference series:

  • 604 Accesses

Abstract

A general scheme of a symbolic-numeric approach for solving the eigenvalue problem for the one-dimensional Shrödinger equation is presented. The corresponding algorithm of the developed program EWA using a conventional pseudocode is described too. With the help of this program the energy spectra and the wave functions for some Schrödinger operators such as quartic, sextic, octic anharmonic oscillators including the quartic oscillator with double well are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landau, L.D., Lifshits, E.M.: Quantum Mechanics: Non-Relativistic Theory. Pergamon Press, New York (1977)

    Google Scholar 

  2. Wilkinson, J.H., Reinsch, C.: Handbook for Automatic Computation. Linear Algebra, vol. 2. Springer, New York (1971)

    MATH  Google Scholar 

  3. Banerjee, K.: General anharmonic oscillators. Proc. Roy. Soc. London, A 364, 265–275 (1978)

    Article  Google Scholar 

  4. Maslov, V.P., Fedoryuk, M.V.: Kvaziklassicheskie pribligeniya dlya uravnenii kvantovoi mekhaniki. Nayka, Moskva (1976)

    Google Scholar 

  5. Puzynin, I.V., Amirkhanov, I.V., et al.: Continuous Analogue of Newton’s Method for the Numerical Investigation of Some Nonlinear Quantum - Field Models. PEPAN 30, 210–265 (1999)

    Google Scholar 

  6. Flugge, S.: Practical Quantum Mechanics. Springer, Heidelberg (1971)

    Google Scholar 

  7. Birkhoff, G.D.: Dynamical Systems. A.M.S. Colloquium Publications. New York (1927)

    Google Scholar 

  8. Gustavson, F.G.: On construction of formal integral of a Hamiltonian system near an equilibrium point. Astronom. J. 71, 670–686 (1966)

    Article  Google Scholar 

  9. Swimm, R.T., Delos: Semiclassical calculation of vibrational energy levels for nonseparable systems using Birkhoff–Gustavson normal form. J. Chem. Phys. 71, 1706 (1979)

    Article  MathSciNet  Google Scholar 

  10. Ali, M.K.: The quantum normal form and its equivalents. J. Math. Phys. 26, 25–65 (1985)

    Article  Google Scholar 

  11. Chekanov, N.A.: Kvantovanie normalnoi formy Birkhoff–Gustavson. Jadernaya Fizika 50, 344–346 (1985)

    Google Scholar 

  12. Abrashkevich, A.G., Abrashkevich, D.G., Kaschiev, M.S., Puzynin, I.V.: FESSDE, a program for the finite-element solution of the coupled-channel Schroedinger equation using high-order accuracy approximations. Comp. Phys. Commun. 85, 65–74 (1995)

    Article  MATH  Google Scholar 

  13. Jaffe, L.G.: Large N limits as classical mechanics. Rev. Mod. Phys. 54, 407–435 (1982)

    Article  Google Scholar 

  14. Dineykhan, M., Efimov, G.V.: The Schroedinger equation for bound state systems in the oscillator representation. Reports of Math. Phys. 6, 287–308 (1995)

    Article  MathSciNet  Google Scholar 

  15. Jafarpour, M., Afshar, D.: Calculation of energy eigenvalues for the quantum anharmonic oscillator with a polynomial potential. J. Phys. A: Math. Gen. 35, 87–92 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ivanov, I.A.: Sextic and octic anharmonic oscillator: connection between strong-coupling and weak-coupling expansions. J. Phys. A: Math. Gen. 31, 5697–5704 (1998)

    Article  MATH  Google Scholar 

  17. Ivanov, I.A.: Link between the strong-coupling and weak-coupling asymptotic perturbation expansions for the quartic anharmonic oscillator. J. Phys. A: Math. Gen. 31, 6995–7003 (1998)

    Article  MATH  Google Scholar 

  18. Liu, X.S., Su, L.W., Ding, P.Z.: Intern. J. Quantum Chem. 87, 1–11 (2002)

    Google Scholar 

  19. Ince, E.L.: Ordinary Differential Equations. Dover Pubns, New York (1956)

    Google Scholar 

  20. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belyaeva, I.N., Chekanov, N.A., Gusev, A.A., Rostovtsev, V.A., Vinitsky, S.I. (2006). A Symbolic-Numeric Approach for Solving the Eigenvalue Problem for the One-Dimensional Schrödinger Equation. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2006. Lecture Notes in Computer Science, vol 4194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11870814_2

Download citation

  • DOI: https://doi.org/10.1007/11870814_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45182-2

  • Online ISBN: 978-3-540-45195-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics