Skip to main content

Intervals, Syzygies, Numerical Gröbner Bases: A Mixed Study

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4194))

Included in the following conference series:

  • 626 Accesses

Abstract

In Gröbner bases computation, as in other algorithms in commutative algebra, a general open question is how to guide the calculations coping with numerical coefficients and/or not exact input data. It often happens that, due to error accumulation and/or insufficient working precision, the obtained result is not one expects from a theoretical derivation. The resulting basis may have more or less polynomials, a different number of solution, roots with different multiplicity, another Hilbert function, and so on. Augmenting precision we may overcome algorithmic errors, but one does not know in advance how much this precision should be, and a trial–and–error approach is often the only way to follow. Coping with initial errors is an even more difficult task. In this experimental work we propose the combined use of syzygies and interval arithmetic to decide what to do at each critical point of the algorithm.

AMS Subject Classification: 13P10, 65H10, 90C31.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, W.W., Loustaunau, P.: An Introduction to Gröbner bases. Graduate Studies in Mathematics, vol. 3. AMS, Providence (1994)

    MATH  Google Scholar 

  2. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)

    MATH  Google Scholar 

  3. Bodrato, M., Zanoni, A.: Numerical Gröbner bases and syzygies: an interval approach. In: Jebelean, T., Negru, V., Petcu, D., Zaharie, D. (eds.) Proceedings of the 6th SYNASC Symposium, Mirton, Timisoara, Romania, pp. 77–89 (2004)

    Google Scholar 

  4. Bonini, C., Nischke, K.-P., Traverso, C.: Computing Gröbner bases numerically: some experiments. In: Proceedings SIMAI (1998)

    Google Scholar 

  5. Buchberger, B.: Introduction to Gröbner Bases. In: Buchberger, B., Winkler, F. (eds.) Gröbner Bases and Applications. London Mathematical Society Lecture Notes Series, vol. 251, pp. 3–31. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  6. Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Commutative Algebra. In: Graduate Studies in Mathematics, vol. 141. Springer, Heidelberg (1993) (2nd edn. 1998)

    Google Scholar 

  7. Caboara, M., Traverso, C.: Efficient Algorithms for ideal operations. In: Proceedings ISSAC 1998, pp. 147–152. ACM Press, New York (1998)

    Chapter  Google Scholar 

  8. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, Heidelberg (1991) (2nd corrected edn. 1998)

    Google Scholar 

  9. Cox, D., Little, J., O’Shea, D.: Using algebraic geometry. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  10. FRISCO: A Framework for Integrated Symbolic/Numeric Computation, ESPRIT Project LTR 21024, European Union (1996–1999)

    Google Scholar 

  11. FRISCO test suite: http://www.inria.fr/saga/POL/

  12. Migheli, L.: Basi di Gröbner e aritmetiche approssimate, Tesi di Laurea, Università di Pisa (in Italian) (1999)

    Google Scholar 

  13. Shirayanagi, K.: Floating Point Gröbner Bases. Journal of Mathematics and Computers in Simulation 42, 509–528 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Stetter, H.J.: Stabilization of polynomial system solving with Gröbner bases. In: Proceedings ISSAC, pp. 117–124 (1997)

    Google Scholar 

  15. Stetter, H.J.: Numerical Polynomial Algebra. SIAM, Philadelphia (2004)

    Book  MATH  Google Scholar 

  16. Traverso, C.: Syzygies, and the stabilization of numerical buchberger algorithm. In: Proceedings LMCS, RISC-Linz, pp. 244–255 (2002)

    Google Scholar 

  17. Traverso, C.: Gröbner trace algorithms. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 125–138. Springer, Heidelberg (1989)

    Google Scholar 

  18. Traverso, C., Zanoni, A.: Numerical Stability and Stabilization of Groebner Basis Computation. In: Mora, T. (ed.) Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, Université de Lille, France, pp. 262–269. ACM Press, New York (2002)

    Chapter  Google Scholar 

  19. Weispfenning, V.: Gröbner Bases for Inexact Input Data. In: Computer Algebra in Scientific Computation - CASC 2003, Passau, TUM, pp. 403–412 (2003)

    Google Scholar 

  20. Zanoni, A.: Numerical stability in Gröbner bases computation. In: Kredel, H., Seidler, W.K. (eds.) Proceedings of the 8th Rhine Workshop on Computer Algebra, pp. 207–216 (2002)

    Google Scholar 

  21. Zanoni, A.: Numerical Gröbner bases, PhD thesis, Università di Firenze, Italy (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bodrato, M., Zanoni, A. (2006). Intervals, Syzygies, Numerical Gröbner Bases: A Mixed Study. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2006. Lecture Notes in Computer Science, vol 4194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11870814_5

Download citation

  • DOI: https://doi.org/10.1007/11870814_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45182-2

  • Online ISBN: 978-3-540-45195-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics