Abstract
In Gröbner bases computation, as in other algorithms in commutative algebra, a general open question is how to guide the calculations coping with numerical coefficients and/or not exact input data. It often happens that, due to error accumulation and/or insufficient working precision, the obtained result is not one expects from a theoretical derivation. The resulting basis may have more or less polynomials, a different number of solution, roots with different multiplicity, another Hilbert function, and so on. Augmenting precision we may overcome algorithmic errors, but one does not know in advance how much this precision should be, and a trial–and–error approach is often the only way to follow. Coping with initial errors is an even more difficult task. In this experimental work we propose the combined use of syzygies and interval arithmetic to decide what to do at each critical point of the algorithm.
AMS Subject Classification: 13P10, 65H10, 90C31.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adams, W.W., Loustaunau, P.: An Introduction to Gröbner bases. Graduate Studies in Mathematics, vol. 3. AMS, Providence (1994)
Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)
Bodrato, M., Zanoni, A.: Numerical Gröbner bases and syzygies: an interval approach. In: Jebelean, T., Negru, V., Petcu, D., Zaharie, D. (eds.) Proceedings of the 6th SYNASC Symposium, Mirton, Timisoara, Romania, pp. 77–89 (2004)
Bonini, C., Nischke, K.-P., Traverso, C.: Computing Gröbner bases numerically: some experiments. In: Proceedings SIMAI (1998)
Buchberger, B.: Introduction to Gröbner Bases. In: Buchberger, B., Winkler, F. (eds.) Gröbner Bases and Applications. London Mathematical Society Lecture Notes Series, vol. 251, pp. 3–31. Cambridge University Press, Cambridge (1998)
Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Commutative Algebra. In: Graduate Studies in Mathematics, vol. 141. Springer, Heidelberg (1993) (2nd edn. 1998)
Caboara, M., Traverso, C.: Efficient Algorithms for ideal operations. In: Proceedings ISSAC 1998, pp. 147–152. ACM Press, New York (1998)
Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, Heidelberg (1991) (2nd corrected edn. 1998)
Cox, D., Little, J., O’Shea, D.: Using algebraic geometry. Springer, Heidelberg (1998)
FRISCO: A Framework for Integrated Symbolic/Numeric Computation, ESPRIT Project LTR 21024, European Union (1996–1999)
FRISCO test suite: http://www.inria.fr/saga/POL/
Migheli, L.: Basi di Gröbner e aritmetiche approssimate, Tesi di Laurea, Università di Pisa (in Italian) (1999)
Shirayanagi, K.: Floating Point Gröbner Bases. Journal of Mathematics and Computers in Simulation 42, 509–528 (1996)
Stetter, H.J.: Stabilization of polynomial system solving with Gröbner bases. In: Proceedings ISSAC, pp. 117–124 (1997)
Stetter, H.J.: Numerical Polynomial Algebra. SIAM, Philadelphia (2004)
Traverso, C.: Syzygies, and the stabilization of numerical buchberger algorithm. In: Proceedings LMCS, RISC-Linz, pp. 244–255 (2002)
Traverso, C.: Gröbner trace algorithms. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 125–138. Springer, Heidelberg (1989)
Traverso, C., Zanoni, A.: Numerical Stability and Stabilization of Groebner Basis Computation. In: Mora, T. (ed.) Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, Université de Lille, France, pp. 262–269. ACM Press, New York (2002)
Weispfenning, V.: Gröbner Bases for Inexact Input Data. In: Computer Algebra in Scientific Computation - CASC 2003, Passau, TUM, pp. 403–412 (2003)
Zanoni, A.: Numerical stability in Gröbner bases computation. In: Kredel, H., Seidler, W.K. (eds.) Proceedings of the 8th Rhine Workshop on Computer Algebra, pp. 207–216 (2002)
Zanoni, A.: Numerical Gröbner bases, PhD thesis, Università di Firenze, Italy (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bodrato, M., Zanoni, A. (2006). Intervals, Syzygies, Numerical Gröbner Bases: A Mixed Study. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2006. Lecture Notes in Computer Science, vol 4194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11870814_5
Download citation
DOI: https://doi.org/10.1007/11870814_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45182-2
Online ISBN: 978-3-540-45195-2
eBook Packages: Computer ScienceComputer Science (R0)