Skip to main content

Inferring Grammar Rules of Programming Language Dialects

  • Conference paper
Grammatical Inference: Algorithms and Applications (ICGI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4201))

Included in the following conference series:

  • 587 Accesses

Abstract

In this paper we address the problem of grammatical inference in the programming language domain. The grammar of a programming language is an important asset because it is used in developing many software engineering tools. Sometimes, grammars of languages are not available and have to be inferred from the source code; especially in the case of programming language dialects. We propose an approach for inferring the grammar of a programming language when an incomplete grammar along with a set of correct programs is given as input. The approach infers a set of grammar rules such that the addition of these rules makes the initial grammar complete. A grammar is complete if it parses all the input programs successfully. We also proposes a rule evaluation order, i.e. an order in which the rules are evaluated for correctness. A set of rules are correct if their addition makes the grammar complete. Experiments show that the proposed rule evaluation order improves the process of grammar inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adriaans, P.W.: Language Learning for Categorial Perspective. PhD thesis, University of Amsterdam, Amsterdam, Netherlands (November 1992)

    Google Scholar 

  2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers Principles, Techniques, and Tools. Pearson Education (Singapore) Pte. Ltd, London (2002)

    Google Scholar 

  3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Crepinsek, M., Mernik, M., Javed, F., Bryant, B.R., Sprague, A.: Extracting grammar from programs: evolutionary approach. SIGPLAN Not. 40(4), 39–46 (2005)

    Article  Google Scholar 

  5. Crepinsek, M., Mernik, M., Zumer, V.: Extracting grammar from programs: brute force approach. SIGPLAN Not. 40(4), 29–38 (2005)

    Article  Google Scholar 

  6. de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recognition 38, 1332–1348 (2005)

    Article  Google Scholar 

  7. Dubey, A., Aggarwal, S.K., Jalote, P.: A technique for extracting keyword based rules from a set of programs. In: CSMR 2005: Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR 2005), Manchester, UK, pp. 217–225. IEEE Computer Society, Los Alamitos (2005)

    Chapter  Google Scholar 

  8. Dubey, A., Jalote, P., Aggarwal, S.K.: A deterministic technique for extracting keyword based grammar rules from programs. In: Proceedings of 21st Annual ACM Symposium on Applied Computing, PL track, Dijon, France, pp. 1631–1632. ACM SIGAPP, New York (2006)

    Google Scholar 

  9. Mark Gold, E.: Language identification in the limit. Information and Control 10(5), 447–474 (1967)

    Article  MATH  Google Scholar 

  10. Gold, E.M.: Complexity of automaton identification from given data. Information and Control 37(3), 302–320 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grünwald, P.: A minimum description length approach to grammar inference. In: Connectionist, Statistical, and Symbolic Approaches to Learning for Natural Language Processing, pp. 203–216. Springer, London (1996)

    Google Scholar 

  12. Jain, R., Aggarwal, S.K., Jalote, P., Biswas, S.: An interactive method for extracting grammar from programs. Softw. Pract. Exper. 34(5), 433–447 (2004)

    Article  Google Scholar 

  13. Koshiba, T., Makinen, E., Takada, Y.: Learning deterministic even linear languages from positive examples. Theor. Comput. Sci. 185(1), 63–79 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lämmel, R., Verhoef, C.: Semi-automatic Grammar Recovery. Software—Practice & Experience 31(15), 1395–1438 (2001)

    Article  MATH  Google Scholar 

  15. Langley, P., Stromsten, S.: Learning context-free grammars with a simplicity bias. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 220–228. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Lawrence, S., Giles, C.L., Fong, S.: Natural language grammatical inference with recurrent neural networks. IEEE Transactions on Knowledge and Data Engineering 12(1), 126–140 (2000)

    Article  Google Scholar 

  17. Lee, L.: Learning of context-free languages: A survey of the literature. Technical Report TR-12-96, Harvard University (1996), ftp://deas-ftp.harvard.edu/techreports/tr-12-96.ps.gz

  18. Mernik, M., Gerlic, G., Zumer, V., Bryant, B.: Can a parser be generated from examples? In: Proceedings of 18th ACM symposium on applied computing, pp. 1063–1067. ACM Press, New York (2003)

    Google Scholar 

  19. Parekh, R., Honovar, V.: Invited Chapter. In: Dale, Moisl, Somers (eds.) Grammar Inference, Automata Induction, and Language Acquision. Marcel Dekker, New York (2000)

    Google Scholar 

  20. van Zaanen, M.: ABL: Alignment-based learning. In: COLING 2000 - Proceedings of the 18th International Conference on Computational Linguistics, Saarbrücken, Germany, pp. 961–967 (August 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dubey, A., Jalote, P., Aggarwal, S.K. (2006). Inferring Grammar Rules of Programming Language Dialects. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds) Grammatical Inference: Algorithms and Applications. ICGI 2006. Lecture Notes in Computer Science(), vol 4201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11872436_17

Download citation

  • DOI: https://doi.org/10.1007/11872436_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45264-5

  • Online ISBN: 978-3-540-45265-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics