Skip to main content

Weak Bisimulation Approximants

  • Conference paper
Computer Science Logic (CSL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4207))

Included in the following conference series:

  • 824 Accesses

Abstract

Bisimilarity and weak bisimilarity ≈ are canonical notions of equivalence between processes, which are defined co-inductively, but may be approached – and even reached – by their (transfinite) inductively-defined approximants ~ α and ≈ α . For arbitrary processes this approximation may need to climb arbitrarily high through the infinite ordinals before stabilising. In this paper we consider a simple yet well-studied process algebra, the Basic Parallel Processes (BPP), and investigate for this class of processes the minimal ordinal α such that ≈ = ≈ α .

The main tool in our investigation is a novel proof of Dickson’s Lemma. Unlike classical proofs, the proof we provide gives rise to a tight ordinal bound, of ω n, on the order type of non-increasing sequences of n-tuples of natural numbers. With this we are able to reduce a long-standing bound on the approximation hierarchy for weak bisimilarity ≈ over BPP, and show that \({\approx} = {\approx_{\omega^\omega}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blass, A., Gurevich, Y.: Program termination and well partial orderings. Microsoft Technical Report MSR-TR-2006-27, 31 pages (March 2006), available at: ftp://ftp.research.microsoft.com/pub/tr/TR-2006-27.pdf

  2. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification over Infinite States. Handbook of Process Algebra, ch. 9, pp. 545–623. Elsevier Publishers, Amsterdam (2001)

    Google Scholar 

  3. Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation equivalence is decidable for basic parallel processes. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 143–157. Springer, Heidelberg (1993)

    Google Scholar 

  4. Christensen, S., Hirshfeld, Y., Moller, F.: Decomposability, decidability and axiomatisability for bisimulation equivalence on basic parallel processes. In: Proceedings of the 8th Annual IEEE Symposium on Logic in Computer Science (LICS 1993), pp. 386–396. IEEE Computer Society Press, Los Alamitos (1993)

    Chapter  Google Scholar 

  5. Christensen, S., Hüttel, H., Stirling, C.: Bisimulation equivalence is decidable for all context-free processes. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 138–147. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  6. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with distinct factors. American Journal of Mathematics 3, 413–422 (1913)

    Article  Google Scholar 

  7. Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel proceses. Fundamenta Informaticae 30, 23–41 (1997)

    MathSciNet  Google Scholar 

  8. Glabbeek, R.: The linear time – branching time spectrum I: The semantics of concrete sequential processes. In: Handbook of Process Algebra, ch. I, pp. 3–99. Elsevier Publishers, Amsterdam (2001)

    Chapter  Google Scholar 

  9. Harwood, W., Moller, F.: Weak bisimulation approximants. In: Selected Papers from the CALCO Young Researchers Workshop (CALCO-jnr 2005), Swansea University Research Report CSR 18-2005, pp. 27–40 (December 2005), available at: http://www-compsci.swan.ac.uk/reports/2005.html

  10. Hirshfeld, Y.: Bisimulation trees and the decidability of weak bisimulation. Electronic Notes in Theoretical Computer Science 5, 2–13 (1997)

    Article  MathSciNet  Google Scholar 

  11. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimilarity of normed context-free processes. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1994), pp. 623–631. IEEE Computer Society Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  12. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimilarity of normed context-free processes. Theoretical Computer Science 15, 143–159 (1996)

    Article  MathSciNet  Google Scholar 

  13. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimulation equivalence of normed basic parallel processes. Mathematical Structures in Computer Science 6, 251–259 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jančar, P.: Strong bisimilarity on Basic Parallel Processes is PSPACE-complete. In: Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science (LICS 2003), pp. 218–227. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  15. Jančar, P., Moller, F.: Techniques for decidability and undecidability of bisimilarity. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 30–45. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Moller, F.: Infinite Results. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 195–216. Springer, Heidelberg (1996)

    Google Scholar 

  17. Srba, J.: Strong bisimilarity and regularity of Basic Process Algebra is PSPACE-hard. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 716–727. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Srba, J.: Strong bisimilarity and regularity of Basic Parallel Processes is PSPACE-hard. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 535–546. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Srba, J.: Complexity of weak bisimilarity and regularity for BPA and BPP. Mathematical Structures in Computer Science 13, 567–587 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Srba, J.: Roadmap of Infinite Results, http://www.brics.dk/~srba/roadmap

  21. Stirling, C.: Decidability of weak bisimilarity for a subset of Basic Parallel Processes. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 379–393. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Stříbrná, J.: Approximating weak bisimulation on Basic Process Algebras. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 366–375. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  23. Sustik, M.: Proof of Dickson’s Lemma using the ACL2 theorem prover via an explicit ordinal mapping. In: The Fourth International Workshop on the ACL2 Theorem Prover and Its Applications (ACL2 2003), Unpublished presentation at available from: http://www.cs.utexas.edu/users/moore/acl2/workshop-2003

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harwood, W., Moller, F., Setzer, A. (2006). Weak Bisimulation Approximants. In: Ésik, Z. (eds) Computer Science Logic. CSL 2006. Lecture Notes in Computer Science, vol 4207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11874683_24

Download citation

  • DOI: https://doi.org/10.1007/11874683_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45458-8

  • Online ISBN: 978-3-540-45459-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics