Abstract
Based on natural deduction, Pure Type Systems (PTS) can express a wide range of type theories. In order to express proof-search in such theories, we introduce the Pure Type Sequent Calculi (PTSC) by enriching a sequent calculus due to Herbelin, adapted to proof-search and strongly related to natural deduction.
PTSC are equipped with a normalisation procedure, adapted from Herbelin’s and defined by local rewrite rules as in Cut-elimination, using explicit substitutions. It satisfies Subject Reduction and it is confluent. A PTSC is logically equivalent to its corresponding PTS, and the former is strongly normalising if and only if the latter is.
We show how the conversion rules can be incorporated inside logical rules (as in syntax-directed rules for type checking), so that basic proof-search tactics in type theory are merely the root-first application of our inference rules.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barendregt, H.P.: Lambda calculi with types. In: Abramsky, S., Gabby, D.M., Maibaum, T.S.E. (eds.) Hand. Log. Comput. Sci., vol. 2, ch.2, pp. 117–309. Oxford University Press, Oxford (1992)
Bloo, R., Geuvers, H.: Explicit substitution: on the edge of strong normalization. Theoret. Comput. Sci. 211(1-2), 375–395 (1999)
Bloo, R.: Pure type systems with explicit substitution. Math. Structures in Comput. Sci. 11(1), 3–19 (2001)
Bloo, R., Rose, K.H.: Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection. In: Computing Science in the Netherlands (CSN 1995), Koninklijke Jaarbeurs, Utrecht, pp. 62–72 (1995)
Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2–3), 95–120 (1988)
The Coq Proof Assistant, http://coq.inria.fr/
Dowek, G.: A complete proof synthesis method for type systems of the cube. J. Logic Comput. (1993)
Dyckhoff, R., Pinto, L.: Proof search in constructive logics. In: Sets and proofs (Leeds, 1997), pp. 53–65. Cambridge Univ. Press, Cambridge (1999)
Dyckhoff, R., Pinto, L.: Permutability of proofs in intuitionistic sequent calculi. Theoret. Comput. Sci. 212(1–2), 141–155 (1999)
Dyckhoff, R., Urban, C.: Strong normalization of Herbelin’s explicit substitution calculus with substitution propagation. J. Logic Comput. 13(5), 689–706 (2003)
Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) Gentzen collected works, pp. 68–131. North Holland, Amsterdam (1969) (1935)
Gutiérrez, F., Ruiz, B.: Cut elimination in a class of sequent calculi for pure type systems. In: de Queiroz, R., Pimentel, E., Figueiredo, L. (eds.) ENTCS, vol. 84. Elsevier, Amsterdam (2003)
Herbelin, H.: A lambda-calculus structure isomorphic to Gentzen-style sequent calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer, Heidelberg (1995)
Herbelin, H.: Séquents quón calcule. PhD thesis, Université Paris 7 (1995)
Huet, G.: The constructive engine. World Scientific Publishing, Commemorative Volume for Gift Siromoney (1989)
Kikuchi, K.: A direct proof of strong normalization for an extended Herbelin’s calculus. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 244–259. Springer, Heidelberg (2004)
Kamin, S., Lévy, J.-J.: Attempts for generalizing the recursive path orderings. Handwritten paper, University of Illinois (1980)
Krivine, J.-L.: Un interpréteur du λ-calcul., available at: http://www.pps.jussieu.fr/~krivine/
Lengrand, S., Dyckhoff, R., McKinna, J.: A sequent calculus for type theory - longer version, available at: http://www.pps.jussieu.fr/~lengrand/Work/Reports/Proofs.ps
Luo, Z., Pollack, R.: LEGO Proof Development System: User’s Manual. Technical Report ECS-LFCS-92-211, School of Informatics, University of Edinburgh (1992)
Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Ann. Pure Appl. Logic 51, 125–157 (1991)
Munoz, C.: Proof-term synthesis on dependent-type systems via explicit substitutions. Theor. Comput. Sci. 266(1-2), 407–440 (2001)
Pinto, L., Dyckhoff, R.: Sequent calculi for the normal terms of the ΛΠ and ΛΠΣ calculi. In: Galmiche, D. (ed.) ENTCS, vol. 17. Elsevier, Amsterdam (2000)
Poll, E.: Expansion Postponement for Normalising Pure Type Systems. J. Funct. Programming 8(1), 89–96 (1998)
Prawitz, D.: Natural deduction. a proof-theoretical study. Acta Universitatis Stockholmiensis, vol. 3. Almqvist & Wiksell (1965)
van Benthem Jutting, B., McKinna, J., Pollack, R.: Checking Algorithms for Pure Type Systems. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806. Springer, Heidelberg (1994)
Zucker, J.: The correspondence between cut-elimination and normalization. Annals of Mathematical Logic 7, 1–156 (1974)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lengrand, S., Dyckhoff, R., McKinna, J. (2006). A Sequent Calculus for Type Theory. In: Ésik, Z. (eds) Computer Science Logic. CSL 2006. Lecture Notes in Computer Science, vol 4207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11874683_29
Download citation
DOI: https://doi.org/10.1007/11874683_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45458-8
Online ISBN: 978-3-540-45459-5
eBook Packages: Computer ScienceComputer Science (R0)