Skip to main content

A Sequent Calculus for Type Theory

  • Conference paper
Computer Science Logic (CSL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4207))

Included in the following conference series:

Abstract

Based on natural deduction, Pure Type Systems (PTS) can express a wide range of type theories. In order to express proof-search in such theories, we introduce the Pure Type Sequent Calculi (PTSC) by enriching a sequent calculus due to Herbelin, adapted to proof-search and strongly related to natural deduction.

PTSC are equipped with a normalisation procedure, adapted from Herbelin’s and defined by local rewrite rules as in Cut-elimination, using explicit substitutions. It satisfies Subject Reduction and it is confluent. A PTSC is logically equivalent to its corresponding PTS, and the former is strongly normalising if and only if the latter is.

We show how the conversion rules can be incorporated inside logical rules (as in syntax-directed rules for type checking), so that basic proof-search tactics in type theory are merely the root-first application of our inference rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barendregt, H.P.: Lambda calculi with types. In: Abramsky, S., Gabby, D.M., Maibaum, T.S.E. (eds.) Hand. Log. Comput. Sci., vol. 2, ch.2, pp. 117–309. Oxford University Press, Oxford (1992)

    Google Scholar 

  2. Bloo, R., Geuvers, H.: Explicit substitution: on the edge of strong normalization. Theoret. Comput. Sci. 211(1-2), 375–395 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bloo, R.: Pure type systems with explicit substitution. Math. Structures in Comput. Sci. 11(1), 3–19 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bloo, R., Rose, K.H.: Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection. In: Computing Science in the Netherlands (CSN 1995), Koninklijke Jaarbeurs, Utrecht, pp. 62–72 (1995)

    Google Scholar 

  5. Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2–3), 95–120 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. The Coq Proof Assistant, http://coq.inria.fr/

  7. Dowek, G.: A complete proof synthesis method for type systems of the cube. J. Logic Comput. (1993)

    Google Scholar 

  8. Dyckhoff, R., Pinto, L.: Proof search in constructive logics. In: Sets and proofs (Leeds, 1997), pp. 53–65. Cambridge Univ. Press, Cambridge (1999)

    Google Scholar 

  9. Dyckhoff, R., Pinto, L.: Permutability of proofs in intuitionistic sequent calculi. Theoret. Comput. Sci. 212(1–2), 141–155 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dyckhoff, R., Urban, C.: Strong normalization of Herbelin’s explicit substitution calculus with substitution propagation. J. Logic Comput. 13(5), 689–706 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) Gentzen collected works, pp. 68–131. North Holland, Amsterdam (1969) (1935)

    Google Scholar 

  12. Gutiérrez, F., Ruiz, B.: Cut elimination in a class of sequent calculi for pure type systems. In: de Queiroz, R., Pimentel, E., Figueiredo, L. (eds.) ENTCS, vol. 84. Elsevier, Amsterdam (2003)

    Google Scholar 

  13. Herbelin, H.: A lambda-calculus structure isomorphic to Gentzen-style sequent calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  14. Herbelin, H.: Séquents quón calcule. PhD thesis, Université Paris 7 (1995)

    Google Scholar 

  15. Huet, G.: The constructive engine. World Scientific Publishing, Commemorative Volume for Gift Siromoney (1989)

    Google Scholar 

  16. Kikuchi, K.: A direct proof of strong normalization for an extended Herbelin’s calculus. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 244–259. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Kamin, S., Lévy, J.-J.: Attempts for generalizing the recursive path orderings. Handwritten paper, University of Illinois (1980)

    Google Scholar 

  18. Krivine, J.-L.: Un interpréteur du λ-calcul., available at: http://www.pps.jussieu.fr/~krivine/

  19. Lengrand, S., Dyckhoff, R., McKinna, J.: A sequent calculus for type theory - longer version, available at: http://www.pps.jussieu.fr/~lengrand/Work/Reports/Proofs.ps

  20. Luo, Z., Pollack, R.: LEGO Proof Development System: User’s Manual. Technical Report ECS-LFCS-92-211, School of Informatics, University of Edinburgh (1992)

    Google Scholar 

  21. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Ann. Pure Appl. Logic 51, 125–157 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Munoz, C.: Proof-term synthesis on dependent-type systems via explicit substitutions. Theor. Comput. Sci. 266(1-2), 407–440 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pinto, L., Dyckhoff, R.: Sequent calculi for the normal terms of the ΛΠ and ΛΠΣ calculi. In: Galmiche, D. (ed.) ENTCS, vol. 17. Elsevier, Amsterdam (2000)

    Google Scholar 

  24. Poll, E.: Expansion Postponement for Normalising Pure Type Systems. J. Funct. Programming 8(1), 89–96 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Prawitz, D.: Natural deduction. a proof-theoretical study. Acta Universitatis Stockholmiensis, vol. 3. Almqvist & Wiksell (1965)

    Google Scholar 

  26. van Benthem Jutting, B., McKinna, J., Pollack, R.: Checking Algorithms for Pure Type Systems. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806. Springer, Heidelberg (1994)

    Google Scholar 

  27. Zucker, J.: The correspondence between cut-elimination and normalization. Annals of Mathematical Logic 7, 1–156 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lengrand, S., Dyckhoff, R., McKinna, J. (2006). A Sequent Calculus for Type Theory. In: Ésik, Z. (eds) Computer Science Logic. CSL 2006. Lecture Notes in Computer Science, vol 4207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11874683_29

Download citation

  • DOI: https://doi.org/10.1007/11874683_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45458-8

  • Online ISBN: 978-3-540-45459-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics