Abstract
Expansions of the natural number ordering by unary predicates are studied, using logics which in expressive power are located between first-order and monadic second-order logic. Building on the model-theoretic composition method of Shelah, we give two characterizations of the decidable theories of this form, in terms of effectiveness conditions on two types of “homogeneous sets”. We discuss the significance of these characterizations, show that the first-order theory of successor with extra predicates is not covered by this approach, and indicate how analogous results are obtained in the semigroup theoretic and the automata theoretic framework.
This paper was written during a visit of the first author in Aachen in March 2006, funded by the European Science Foundation ESF in the Research Networking Programme AutoMathA (Automata: From Mathematics to Applications).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Nagel, E., et al. (eds.) Proc. International Congress on Logic, Methodology and Philosophy of Science, pp. 1–11. Stanford University Press (1960)
Büchi, J.R., Landweber, L.H.: Definability in the monadic second-order theory of successor. J. Symb. Logic 34, 166–170 (1969)
Carton, O., Thomas, W.: The Monadic Theory of Morphic Infinite Words and Generalizations. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 275–284. Springer, Heidelberg (2000)
Carton, O., Thomas, W.: The Monadic Theory of Morphic Infinite Words and Generalizations. Inf. Comput. 176(1), 51–65 (2002)
Elgot, C., Rabin, M.O.: Decidability and Undecidability of Extensions of Second (First) Order Theory of (Generalized) Successor. J. Symb. Logic 31(2), 169–181 (1966)
Gurevich, Y.: Monadic second order theories. In: Barwise, J., Feferman, S. (eds.) Model Theoretic Logics, pp. 479–506. Springer, Heidelberg (1986)
Lifsches, S., Shelah, S.: Uniformization and Skolem Functions in the Class of Trees. J. Symb. Logic 63, 103–127 (1998)
Rabinovich, A.: On decidability of monadic logic of order over the naturals extended by monadic predicates (manuscript, 2005) (submitted)
Robinson, R.M.: Restricted Set-Theoretical Definitions in Arithmetic. Proceedings of the American Mathematical Society 9(2), 238–242 (1958)
Rogers, H.R.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)
Semenov, A.: Logical theories of one-place functions on the set of natural numbers. Mathematics of the USSR - Izvestia 22, 587–618 (1984)
Shelah, S.: The monadic theory of order. Ann. of Math. 102, 349–419 (1975)
Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston (1994)
Siefkes, D.: Decidable extensions of monadic second-order successor arithmetic. In: Dörr, J., Hotz, G. (eds.) Automatentheorie und Formale Sprachen, pp. 441–472. BI-Wissenschaftsverlag, Mannheim (1970)
Thomas, W.: Das Entscheidungsproblem für einige Erweiterungen der Nachfolger-Arithmetik. Ph. D. Thesis Albert-Ludwigs Universität, Freiburg (1975)
Thomas, W.: The theory of successor with an extra predicate. Math. Ann. 237, 121–132 (1978)
Thomas, W.: Automata on infinite objects. In: Leeuwen, J.v. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 135–191. Elsevier, Amsterdam (1990)
Thomas, W.: Ehrenfeucht Games, the composition method, and the monadic theory of ordinal words. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science. LNCS, vol. 1261, pp. 118–143. Springer, Heidelberg (1997)
Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, Heidelberg (1997)
Trakhtenbrot, B.A.: Finite automata and the logic of one-place predicates (Russian version 1961). AMS Transl. 59, 23–55 (1966)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rabinovich, A., Thomas, W. (2006). Decidable Theories of the Ordering of Natural Numbers with Unary Predicates. In: Ésik, Z. (eds) Computer Science Logic. CSL 2006. Lecture Notes in Computer Science, vol 4207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11874683_37
Download citation
DOI: https://doi.org/10.1007/11874683_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45458-8
Online ISBN: 978-3-540-45459-5
eBook Packages: Computer ScienceComputer Science (R0)