Abstract
There has been significant recent progress in the integration of probabilistic reasoning with first order logic representations (SRL). So far, the learning algorithms developed for these models all learn from scratch, assuming an invariant background knowledge. As an alternative, theory revision techniques have been shown to perform well on a variety of machine learning problems. These techniques start from an approximate initial theory and apply modifications in places that performed badly in classification. In this work we describe the first revision system for SRL classification, PFORTE, which addresses two problems: all examples must be classified, and they must be classified well. PFORTE uses a two step-approach. The completeness component uses generalization operators to address failed proofs and the classification component addresses classification problems using generalization and specialization operators. Experimental results show significant benefits from using theory revision techniques compared to learning from scratch.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baião, F., Mattoso, M., Shavlik, J., Zaverucha, G.: Applying theory revision to the design of distributed databases. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 57–74. Springer, Heidelberg (2003)
Buntine, W.: Theory refinement on Bayesian networks. In: Proc. 17th Conf. Uncertainty in Artificial Intelligence, pp. 52–60 (1991)
Costa, V., Page, D., Qazi, M., Cussens, J.: CLP(BN): Constraint logic programming for probabilistic knowledge. In: Proc. 19th Annual Conf. on Uncertainty in Artificial Intelligence, pp. 517–524 (2003)
Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Proc. 16th Int. Joint Conf. on Artificial Intelligence, pp. 1300–1309 (1999)
Grossman, D., Domingos, P.: Learning bayesian network classifiers by maximizing conditional likelihood. In: Proc. 21th Int. Conf. on Machine Learning, pp. 361–368 (2004)
Haddawy, P.: An overview of some recent developments on bayesian problem solving techniques. AI Magazine - Special issue on Uncertainty in AI 20(2), 11–29 (1999)
Kersting, K., De Raedt, L.: Towards Combining Inductive Logic Programming with Bayesian Networks. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, p. 118. Springer, Heidelberg (2001)
Kersting, K., De Raedt, L.: Basic Principles of Learning Bayesian Logic Programs. Technical Report 174, University of Freiburg (2002)
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proc. Int. Joint Conf. on Artificial Intelligence, pp. 1137–1145 (1995)
Koller, D., Pfeffer, A.: Learning probabilities for noisy first-order rules. In: Proc. 15th Int. Joint Conf. on Artficial Intelligence, pp. 1316–1323 (1997)
Muggleton, S.: Learning structure and parameters of stochastic logic programs. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 198–206. Springer, Heidelberg (2003)
Murphy, K.: The Bayes Net Toolbox for Matlab. Computing Science and Statistics 33 (2001)
Paes, A., Revoredo, K., Zaverucha, G., Costa, V.: Probabilistic first-order theory revision from examples. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS, vol. 3625, pp. 295–311. Springer, Heidelberg (2005)
Pearl, J.: Probabilistic Reasoning in Inteligent Systems: networks of plausible inference. Morgan Kaufmann, San Francisco (1988)
Quinlan, J.: Learning logical definitions from relations. Machine Learning 5, 239–266 (1990)
Ramachandran, S., Mooney, R.: Theory refinement of bayesian networks with hidden variables. In: Proc. 15th Int. Conf. on Machine Learning, pp. 454–462 (1998)
Revoredo, K., Zaverucha, G.: Revision of first-order Bayesian classifiers. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 223–237. Springer, Heidelberg (2003)
Richards, B.L., Mooney, R.J.: Automated refinement of first-order Horn-clause domain theories. Machine Learning 19, 95–131 (1995)
Richardson, M., Domingos, P.: Markov Logic Networks. Machine Learning 62, 107–136 (2006)
Sato, T., Kameya, Y.: Prism: A language for symbolic-statistical modeling. In: Proc. 15th Int. Joint Conf. on Artificial Intelligence, pp. 1330–1339 (1997)
Srinivasan, A.: The Aleph Manual (2001)
Wogulis, J., Pazzani, M.: A methodology for evaluationg theory revision systems: results with Audrey II. In: Proc. 13th Int. Join Conf. on Artificial Intelligence, pp. 1128–1134 (1993)
Wrobel, S.: First-order theory refinement. In: Raedt, L.D. (ed.) Advances in Inductive Logic Programming, pp. 14–33. IOS Press, Amsterdam (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Paes, A., Revoredo, K., Zaverucha, G., Costa, V.S. (2006). PFORTE: Revising Probabilistic FOL Theories. In: Sichman, J.S., Coelho, H., Rezende, S.O. (eds) Advances in Artificial Intelligence - IBERAMIA-SBIA 2006. IBERAMIA SBIA 2006 2006. Lecture Notes in Computer Science(), vol 4140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11874850_48
Download citation
DOI: https://doi.org/10.1007/11874850_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45462-5
Online ISBN: 978-3-540-45464-9
eBook Packages: Computer ScienceComputer Science (R0)