Abstract
The increased availability of remotely sensed spatio-temporal data offers the chance to improve the reliability of an important class of Cellular Automata (CA) models used for the simulation of real complex systems. To this end, this paper proposes a multiobjective approach, based on a genetic algorithm, which can present some significant advantages if compared with standard single-objective optimizations. The method exploits the available temporal sequences of spatial data in order to produce CAs which are non-dominated with respect to multiple objectives. The latter represent, in different metrics, the level of agreement between the simulated and real spatio-temporal processes. The set of non-dominated CAs proves to be a valuable source of information about potentialities and limits of a specific CA model structure.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Spataro, W., D’Ambrosio, D., Rongo, R., Trunfio, G.A.: An evolutionary approach for modelling lava flows through cellular automata. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 725–734. Springer, Heidelberg (2004)
Clarke, K., Hoppen, S., Gaydos, L.: A self-modifying cellular automaton model of historical urbanization in the San Francisco bay area. Environment and Planning B-Planning and Design 24, 247–261 (1997)
Yeh, A.G.O., Li, X.: Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. Journal of Geogr. Inf. Science 16, 323–343 (2002)
Li, X., Yeh, A.G.O.: Data mining of cellular automata’s transition rules. International Journal of Geographical Information Science 18, 723–744 (2004)
Yeh, A.G.O., Li, X.: Simulation of development alternatives using neural networks, cellular automata, and GIS for urban planning. Photog. Eng. & Remote Sensing 69, 1043–1052 (2003)
Trunfio, G.A.: Enhancing cellular automata by an embedded generalized multilayer perceptron. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 343–348. Springer, Heidelberg (2005)
Goldstein, N.C.: Brains vs. brawn comparative strategies for the calibration of a cellular automata based urban growth model. In: Proceedings of the 7th International Conference on GeoComputation (2003)
Pareto, V.: Cours d’Economie Politique. Volume I, II. F. Rouge, Lausanne (1896)
Di Gregorio, S., Serra, R.: An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Future Generation Computer Systems 16, 259–271 (1999)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comp. 6, 182–197 (2002)
Project Gigalopolis, NCGIA (2003), http://www.ncgia.ucsb.edu/projects/gig/
Lee, D., Sallee, G.: A method of measuring shape. Geographical Review 60, 555–563 (1970)
Yang, X., Lo, C.: Modelling urban growth and landscape change in the Atlanta metropolitan area. International Journal of Geographical Information Science 17, 463–488 (2003)
Silva, E., Clarke, K.: Calibration of the sleuth urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems 26, 525–552 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Trunfio, G.A. (2006). Exploiting Spatio–temporal Data for the Multiobjective Optimization of Cellular Automata Models. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2006. IDEAL 2006. Lecture Notes in Computer Science, vol 4224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875581_10
Download citation
DOI: https://doi.org/10.1007/11875581_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45485-4
Online ISBN: 978-3-540-45487-8
eBook Packages: Computer ScienceComputer Science (R0)