Abstract
This paper presents a cyclical methodology for the continuous improvement of e-learning courses using data mining techniques applied to education. For this purpose, a specific data mining tool has been developed, which discovers relevant relationships between data about how students use a course. Unlike others data mining approaches applied to education, which focus on the student, this method is aimed professors and how to help them improve the structure and contents of an e-learning course by making recommendations. We also use a rule discovery algorithm without parameters in order to be easily used by non-expert users in data mining. The results of experimental tests performed on an online course are also presented, demonstrating the usefulness of the proposed methodology and algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Itmazi, J.A.S.: Sistema Flexible de gestión del elearning para soportar el aprendizaje en las universidades tradicionales y abiertas. PhD Thesis. University of Granada, Spain (2005)
Brusilovsky, P.: Adaptative Educational Systems on the World-Wide-Web: A Review. In: Int. Conf. on Intelligent Tutoring Systems, San Antonio (1998)
Srivastava, J., Mobasher, B., Cooley, R.: Automatic Personalization Based on Web Usage Mining. Communications of the Association of Computing Machinery, 142–151 (2000)
Li, J., Zaiane, O.R.: Combining Usage, Content and Structure Data to Improve Web Site Recommendation. In: Int. Conf. on Electronic Commerce and Web Technologies, Spain (2004)
Barnett, V., Lewis, T.: Outliers in Statistical Data. John Wiley & Sons, Chichester (1994)
Romero, C., Ventura, S., Hervás, C.: Estado actual de la aplicación de la minería de datos a los sistemas de enseñanza basada en web. III Taller de Minería de Datos y Aprendizaje, TAMID. Granada, 49–56 (2005)
Zaïane, O.Z.: Web Usage Mining for a Better Web-Based Learning Environment. In: Conference on Advanced Technology for Education, Alberta, pp. 60–64 (2001)
Romero, C., Ventura, S., de Bra, P.: Knowledge Discovery with Genetic Programming for Providing Feedback to Courseware Author. User Modeling and User-Adapted Interaction 14(5), 425–464 (2005)
Romero, C., Ventura, S., Castro, C., Hall, W., Hong, M.: Using Genetic Algorithms for Data Mining in Web-based Educational Hypermedia Systems. In: Adaptive Hypermedia. Workshop on Adaptive Systems for Web-based Education. Málaga, pp. 137–142 (2002)
Developing adaptive educational systems: From Design Models to Authoring tools. Authoring Tools for Advanced Technology learning environments, pp. 377-409. Kluwer Academic Publishers, Netherlands (2003)
Zheng, Z., Kohavi, R., Mason, L.: Real world performance of association rules. In: Proceedings of the Sixth ACM-SIGKDD (2001)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of 20th VLDB CVonf, Santiago de Chile (1996)
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of ACM-SIGMOD International Conference on Management of Data (1999)
Webb, G.I.: OPUS: An efficient admissible algorithm for unordered search. Journal of Artificial Intelligence Research, 431–465 (1995)
Pei, J., Han, J., Mao, R.: CLOSET: An efficient algorithm for mining frequent closed itemsets. In: Proceedings of ACM/SIGMOD International DMKD 2000, Dallas, TX (2000)
The University of Waikato. Weka:Waikato Environment for Knowledge Analysis, Available at http://www.cs.waikato.ac.nz/ml/weka/ in May of the (2006)
Tobias, S.: Finding Association Rules That Trade Support Optimally against Confidence. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, p. 424. Springer, Heidelberg (2001)
Tan, P., Kumar, V.: Interesting Measures for Association Patterns: A Perspectiva. Technical Report TR00-036. Department of Computer Science, University of Minnnesota (2000)
Liu, B., Wynne, H., Shu, C., Yiming, M.: Analyzing the Subjective Interestingness of Association Rules. IEEE Inteligent System (2000)
Tang, T., McCalla, G.: Smart Recommendation for an Evolving E-Learning System: Architecture and Experiment. International Journal on E-Learning 4(1), 105–129 (2005)
Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: An enabling technique. Journal of Data Mining and Knowledge Discovery, 393–423 (2002)
De Castro, C., García, E., Romero, C., Ventura, S.: Herramienta autor INDESAHC para la creación de cursos hipermedia adaptativos. Revista latinoamericana de tecnología educativa 3(1) (2004)
De Bra, P., Calvi, L.: AHA! An Open Adaptive Hypermedia Architecture. The New Review of Hypermedia and Multimedia, vol. 4, pp. 115–139. Taylor Graham Publishers (1998)
Advanced Distributed Learning. Shareable content object reference model (SCORM): The SCORM overview. (May of the 2006), Available http://www.adlnet.org
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
García, E., Romero, C., Ventura, S., de Castro, C. (2006). Using Rules Discovery for the Continuous Improvement of e-Learning Courses. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2006. IDEAL 2006. Lecture Notes in Computer Science, vol 4224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875581_106
Download citation
DOI: https://doi.org/10.1007/11875581_106
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45485-4
Online ISBN: 978-3-540-45487-8
eBook Packages: Computer ScienceComputer Science (R0)