Skip to main content

Applying GCS Networks to Fuzzy Discretized Microarray Data for Tumour Diagnosis

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2006 (IDEAL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4224))

  • 1711 Accesses

Abstract

Gene expression profiles belonging to DNA microarrays are composed of thousands of genes at the same time, representing the complex relationships between them. In this context, the ability of designing methods capable of overcoming current limitations is crucial to reduce the generalization error of state-of-the-art algorithms. This paper presents the application of a self-organised growing cell structures network in an attempt to cluster biological homogeneous patients. This technique makes use of a previous successful supervised fuzzy pattern algorithm capable of performing DNA microarray data reduction. The proposed model has been tested with microarray data belonging to bone marrow samples from 43 adult patients with cancer plus a group of six cases corresponding to healthy persons. The results of this work demonstrate that classical artificial intelligence techniques can be effectively used for tumour diagnosis working with high-dimensional microarray data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Piatetsky-Shapiro, G., Tamayo, P.: Microarray data mining: facing the challenges. ACM SIGKDD Explorations Newsletter 5(2), 1–5 (2003)

    Article  Google Scholar 

  • Cho, S.B., Won, H.H.: Machine learning in DNA microarray analysis for cancer classification. In: Proc. of the First Asia-Pacific Bioinformatics Conference, pp. 189–198 (2003)

    Google Scholar 

  • Ochs, M.F., Godwin, A.K.: Microarrays in Cancer: Research and Applications. BioTechniques 15, 14–15 (2003)

    Google Scholar 

  • Xiang, Z.Y., Yang, Y., Ma, X., Ding, W.: Microarray expression profiling: Analysis and applications. Current Opinion in Drug Discovery & Development 6(3), 384–395 (2003)

    Google Scholar 

  • Golub, T.: Genome-Wide Views of Cancer. The New England Journal of Medicine 344, 601–602 (2001)

    Article  Google Scholar 

  • Cakmakov, D., Bennani, Y.: Feature selection for pattern recognition. Informa Press (2003)

    Google Scholar 

  • Díaz, F., Fdez-Riverola, F., Corchado, J.M.: GENE-CBR: a Case-Based Reasoning Tool for Cancer Diagnosis using Microarray Datasets. Computational Intelligence (in Press) ISSN 0824-7935

    Google Scholar 

  • Fdez-Riverola, F., Díaz, F., Borrajo, M.L., Yáñez, J.C., Corchado, J.M.: Improving Gene Selection in Microarray Data Analysis using fuzzy Patterns inside a CBR System. In: Proc. Of the 6th International Conference on Case-Based Reasoning, pp. 191–205 (2005)

    Google Scholar 

  • Fritzke, B.: Growing Self-organising Networks – Why? In: Proc. of the European Symposium on Artificial Neural Networks, pp. 61–72 (1993)

    Google Scholar 

  • Kohonen, T.: Self-Organising Maps. Springer, Heidelberg (1995)

    Google Scholar 

  • Fritzke, B.: Growing Cell Structures - A Self-organizing Network for Unsupervised and Supervised Learning. Technical Report, International Computer Science Institute, Berkeley (1993)

    Google Scholar 

  • Vardiman, W., Harris, N.L., Brunning, R.D.: The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100, 2292–2302 (2002)

    Article  Google Scholar 

  • Grimwade, D., Walker, H., Oliver, F., Wheatley, K., Harrison, C., Harrison, G., Rees, J., Hann, I., Stevens, R., Burnett, A., Goldstone, A.: The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood 92, 2322–2333 (1998)

    Google Scholar 

  • Slovak, M.L., Kopecky, K.J., Cassileth, P.A., Harrington, D.H., Theil, K.S., Mohamed, A., Paietta, E., Willman, C.L., Head, D.R., Rowe, J.M., Forman, S.J., Appelbaum, F.R.: Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96, 4075–4083 (2000)

    Google Scholar 

  • Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díaz, F., Fdez-Riverola, F., Glez-Peña, D., Corchado, J.M. (2006). Applying GCS Networks to Fuzzy Discretized Microarray Data for Tumour Diagnosis. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2006. IDEAL 2006. Lecture Notes in Computer Science, vol 4224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875581_130

Download citation

  • DOI: https://doi.org/10.1007/11875581_130

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45485-4

  • Online ISBN: 978-3-540-45487-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics