Skip to main content

Fuzzy Regression with Quadratic Programming: An Application to Financial Data

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2006 (IDEAL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4224))

  • 1737 Accesses

Abstract

The fuzzy approach to regression has been traditionally considered as a problem of linear programming. In this work, we introduce a variety of models founded on quadratic programming together with a set of indices useful to check the quality of the obtained results. In order to test the validness of our proposal, we have done an empirical study and we have applied the models in a case with financial data: the Chilean COPEC Company stock price.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bárdossy, A.: Note on fuzzy regression. Fuzzy Sets and Systems 37, 65–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chang, Y.-H.O.: Hybrid fuzzy lest-squares regression analysis and its reliability measures. Fuzzy Sets and Systems 119, 225–246 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kao, C., Chyu, C.L.: Least-squares estimates in fuzzy regression analysis. European Journal of Operational Research 148, 426–435 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kim, B., Bishu, R.R.: Evaluation of fuzzy linear regression models by comparing membership functions. Fuzzy Sets and Systems 100, 342–353 (1998)

    Article  Google Scholar 

  5. Kim, K.J., Moskowitz, H., Koksalan, M.: Fuzzy versus statistical linear regression. European Journal of operational Research 92, 417–434 (1996)

    Article  MATH  Google Scholar 

  6. Ozelkan, E.C., Duckstein, L.: Multi-objective fuzzy regression: a general framework. Computers and Operations Research 27, 635–652 (2000)

    Article  Google Scholar 

  7. Peters, G.: Fuzzy linear regression with fuzzy intervals. Fuzzy Sets and Systems 63, 45–53 (1994)

    Article  MathSciNet  Google Scholar 

  8. Redden, D.T., Woodall, W.H.: Properties of certain fuzzy linear regression methods. Fuzzy Sets and Systems 64, 361–375 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Savic, D.A., Pedrycz, W.: Evaluation of fuzzy linear regression models. Fuzzy Sets and Systems 39, 51–63 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tanaka, H., Wataka, J.: Possibilistic linear systems and their applications to the linear regresion model. Fuzzy Sets and Systems 27, 275–289 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tanaka, H., Lee, H.: Interval regression analysis by quadratic programming approach. IEEE Trans. on Fuzzy Systems 6(4) (1998)

    Google Scholar 

  12. Tanaka, H., Uejima, S., Asai, K.: Linear regression analysis with fuzzy model. IEEE Trans. on Systems, Man, and Cybernetics 12(6), 903–907 (1982)

    Article  MATH  Google Scholar 

  13. Zwick, R., Carlstein, E., Budescu, D.V.: Measures of similarity among fuzzy concepts: A comparative analysis. International Journal of Aproximate Reasoning 1, 221–242 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Donoso, S., Marín, N., Vila, M.A. (2006). Fuzzy Regression with Quadratic Programming: An Application to Financial Data. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2006. IDEAL 2006. Lecture Notes in Computer Science, vol 4224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875581_155

Download citation

  • DOI: https://doi.org/10.1007/11875581_155

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45485-4

  • Online ISBN: 978-3-540-45487-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics