Skip to main content

Spectral High Resolution Feature Selection for Retrieval of Combustion Temperature Profiles

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2006 (IDEAL 2006)

Abstract

The use of high spectral resolution measurements to obtain a retrieval of certain physical properties related with the radiative transfer of energy leads a priori to a better accuracy. But this improvement in accuracy is not easy to achieve due to the great amount of data which makes difficult any treatment over it and it’s redundancies. To solve this problem, a pick selection based on principal component analysis has been adopted in order to make the mandatory feature selection over the different channels. In this paper, the capability to retrieve the temperature profile in a combustion environment using neural networks jointly with this spectral high resolution feature selection method is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Romero, C., Li, X., Keyran, S., Rossow, R.: Spectrometer-based combustion monitoring for flame stoichiometry and temperature control. Appl. Therm. Eng. 25, 659–676 (2005)

    Article  Google Scholar 

  2. Thakur, M., Vyas, A., Shakher, C.: Measurement of temperature and temperature profile of an axisymmetric gaseous flames using lau phase interferometer with linear gratings. Opt. Laser Eng. 36, 373–380 (2001)

    Article  Google Scholar 

  3. Lu, G., Yan, Y., Colechin, M.: A digital imaging based multifuncional flame monitoring system. IEEE T. Instrum. Meas. 53, 1152–1158 (2004)

    Article  Google Scholar 

  4. Liu, L.H., Jiang, J.: Inverse radiation problem for reconstruction of temperature profile in axisymmetric free flames. J. Quant. Spectrosc. Radit. Transfer 70, 207–215 (2001)

    Article  Google Scholar 

  5. McCornick, N.J.: Inverse radiative transfer problems: a review. Nuclear Science and Engineering 112, 185–198 (1992)

    Google Scholar 

  6. Eyre, J.R.: Inversion methods for satellite sounding data. Lecture Notes NWP Course. In: European Centre for Medium-Range Weather Forecasts, ECMWF (2004)

    Google Scholar 

  7. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1999)

    Google Scholar 

  8. Pearson, K.: On lines and planes of closet fit to systems of points in space. Phil. Mag. 2, 559–572 (1901)

    Google Scholar 

  9. Hotelling, H.: Analysis of a complex of statistical variables into principal components. Educ. Physhol 24, 417–441, 498–520 (1933)

    Google Scholar 

  10. Jollife, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics. Springer, New York (2002)

    Google Scholar 

  11. Cybenko, G.: Approximation by superposition of a sigmoidal function. Mathematics of Control, Signals, and Systems 2, 303–314 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2, 359–366 (1989)

    Article  Google Scholar 

  13. Aires, F., Chédin, A., Scott, N.A., Rossow, W.B.: A regularized neural net approach for retrieval of atmospheric and surface temperatures with the iasi instrument. Journal of Applied Meteorology 41, 144–159 (2001)

    Article  Google Scholar 

  14. Rothman, L.S.: The hitran molecular spectroscopic database: edition of 2000 including updates through 2001. J. Quant. Spectrosc. Radiat. Transfer (2003)

    Google Scholar 

  15. García-Cuesta, E.: CASIMIR: Cálculos Atmosfericos y Simulacion de la Transmitancia en el Infrarrojo. University Carlos III L/PFC 01781, Madrid (2003) (in Spanish)

    Google Scholar 

  16. Huang, H.L., Antonelli, P.: Application of principal component analysis to high-resolution infrared measurement compression an retrieval. J. Clim. Appl. Meteorol. 40, 365–388 (2001)

    Article  Google Scholar 

  17. Aires, F.: Remote sensing from the infrared atmospheric sounding interferometer instrument. J. Geophys. Res. 107, ACH6–1–15 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García-Cuesta, E., Galván, I.M., de Castro, A.J. (2006). Spectral High Resolution Feature Selection for Retrieval of Combustion Temperature Profiles. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2006. IDEAL 2006. Lecture Notes in Computer Science, vol 4224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875581_91

Download citation

  • DOI: https://doi.org/10.1007/11875581_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45485-4

  • Online ISBN: 978-3-540-45487-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics