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Abstract. The use of high spectral resolution measurements to obtain a retrieval
of certain physical properties related with the radiative transfer of energy leads
a priori to a better accuracy. But this improvement in accuracy is not easy to
achieve due to the great amount of data which makes diff cult any treatment over
it and it’s redundancies. To solve this problem, a pick selection based on principal
component analysis has been adopted in order to make the mandatory feature
selection over the different channels. In this paper, the capability to retrieve the
temperature profle in a combustion environment using neural networks jointly
with this spectral high resolution feature selection method is studied.

1 Introduction

Progress in optoelectronic technologies during last decade has led to the fabrication
of new sensors to measure the radiated energy focused on new measurement concept
based on high spectral resolution measurements. High resolution measurements leads a
priori to better accuracy in retrieval of physical properties in radiative transfer of energy
(RTE) problems. However, as the number of data increases, it makes more diff cult
the use of conventional data regression techniques to retrieve the physical information
involved in the problem. One problem is related with the amount of samples needed
to cover this high dimensionality space, which is so-called the curse of dimensionality.
Also, the high dimensionality increase the complexity of regression models used to
retrieve the information and consequently the number of operations to solve it. This
make impractical the use of these kind of techniques when the dimensionality is large
and encourage the use of new techniques for this kind of inverse problems.

The industrial fuel fred furnace is a context where optoelectronic technologies have
some advantages over conventional temperature monitoring devices such thermocou-
ples. These advantages are mainly three: it is not intrusive, it does not disturb the mea-
surement, and it can undergo the harsh furnace environment. In this context it is very
important to have devices that monitor and control the combustion process in order to
minimise pollutant emissions as well as to optimise energy losses. Flame temperature
appears, among others, as a very important parameter to be monitored[[1][12][13][4].

The retrieval of temperature profile from high resolution measurements of radiative
transfer of energy is related to ill-posed problems or under-constrained since we are
trying to retrieve a continuous function from a f nite measurements[5fo
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The use of artif cial neural networks as inverse model for the RTE seem to be an
alternative to retrieve the temperature profile . One important advantage of neural net-
works is their speed. Once the neural network has been trained, the results of the in-
version method are almost instantaneous compared to regression models. Some other
advantages over classical physical-statistical techniques are the not need of good initial
conditions for the inversion model and the independence of a rapid direct model for
iterative inversion algorithms[6].

The purpose of this study is to show an approximation to retrieve the temperature
prof le of combustions processes composed by CO» and water vapor from optical spec-
troradiometric measurements. The use of artif cial neural networks and the improve-
ment obtained with an specif ¢ selection of spectra channels in this kind of problems
will be tested based on the accuracy of the results obtained for the retrieval.

Two approaches are presented in this paper to validate the use of neural networks and
the improvement obtained using statistical techniques to introduce a priori knowledge in
the reducing dimensionality process. In a initial approach a multilayer perceptron neural
network has been trained using all the data belonging to a spectrum which implies a
huge number of input nodes including redundancies and possible noisy information. A
priori, as more data is included better results would be expected, but in the other hand
this high dimensionality could prevent an appropriate performance of MLP.

To prevent this disadvantages using high spectral resolution measurements a refine
approach to reduce the dimensionality is proposed. There are different ways to make a
reduction of the dimensionality: feature extraction(linear or not linear), transformation
of data (principal components analysis projections) and feature selection[7]. Because
of the importance of semantic interpretation, a feature selection is adopted instead of
methods which f nd a mapping between the original feature space to lower dimensional
feature space. Principal Components Analysis (PCA)[8][9], and typical methods as B2
and B4 to select a subset of original variables[[10] has been tested without successful
results. Here, a feature selection with a pick peak selector is proposed which tries to
spread the selection according to a priori physical knowledge. Then a MLP is trained
with the selected channels reducing the complexity of the network and improving it’s
performance.

The the paper is organised as follows: In Sect. 2] a context description of retrieval
of temperature profles in fames is made, describing the simulations carried out and
the obtained results. This section includes also the use of PCA and peak selection to
reduce the dimensionality of the input space for the MLP. Discussion and conclusions
are presented in Sect.[3]

2 Temperature Retrieval Using Neural Networks

Neural networks techniques can be used as an approach to solving problems of f tting
experimental data. In the context of approximation of nonlinear maps, the architecture
most widely used is the MLP. It is relatively quite straightforward to use and it has
been proven by different authors that they are universal approximators ([LL1]], [12]]), in
the sense that any continuous function may be represented by a MLP with one hidden
layer. Here the MLP is used as inverse model for the RTE.



In previous works, neural networks have been used to invert the RTE in atmospheric
problems][[13]]. However, important differences can be pointed out in relation to the com-
bustion problem involved in this work. Values and variation ranges for temperature and
gas concentrations are different. Moreover, the optic path length is unknown from the
point of view of transmitter-receptor.

In this context of industrial fuel fred furnace, given a high spectral spectrum energy
measurement from a sensor (spectroradiometer) which are related to the Eq. (D), the
goal is to recover the temperature prof le inside a hot gas cloud. The dependence of the
energy measured by the sensor and temperature and optical-path length of the hot gas
is expressed by the RTE

R, = (IO)VTI/(ZO) +/ BV{T(Z)}dTQEZ) dz (1)

where v; are the different channels of energy, B,,{T(z)} is the Planck function which
indicates the radiance emitted by a blackbody at temperature T and 7, is the hot gas
transmission at channel v between the sensor and the depth 2. The value of 7 depends
in a non-linear way of 7" and z; 7 = —expX7?l, where K is a constant provided by
HITRAN/HITEMP database[14].

The problem to obtain the temperature prof le from such a spectrum is not straight-
forward. Energy emission at each channel depends in a non-linear way on parameters
like the spatial distribution of temperature and the gas cloud width. Moreover each
channel emission depends in a different way on these parameters.

In the next, the procedure to obtain the data sets to train MLPs is explained. After,
the results of different experimental simulations are shown. In an initial approach, the
whole spectrum variables are used as input to MLPs. The ref ned approach try to reduce
the input dimensionality of the network using the pick peak selector to make a feature
selection.

The performance of different approaches is measured, in one hand, in terms of mean
square error over the training and test data sets and, in other hand, in terms of average
temperature error per prof le and for the hottest cell. The hottest cell is used as criterion
because its retrieval is the most diff cult due to the fact that energy emitted by this cell
is absorbed by the others which behave as a mask.

2.1 Experimental Data Sets

The data set is composed of large number of synthetic emission spectra generated with
a computer code developed at University Carlos III (CASIMIR)[[15] based on the well
known HITRAN/HITEMP[14]] spectral database. The total number of cases simulated
are 1040 covering many possible sceneries of a typical fame combustion. Data set
generation has been performed under the following assumptions:

— Synthetic spectra will correspond to energy emission of hot gas cloud of width L.
Temperature and gas concentrations present gradients inside the cloud.

— The spectral range selected for this data setis 2110cm~1-2410cm L. In this spectral
range, the CO5 emission band is by far the most important emission feature, being
the water emission nearly negligible. Due to this fact, only the emission associated
to the CO, will be considered.



— For retrieval scheme, we have used an spatial discretization with fve cells of equal
width (L/5). Each cell has an average value of temperature and gas concentration.

— The concentration prof les for carbon dioxide and water vapour will keep
unchanged for the whole data set. Numerical values for these concentrations have
been selected from typical combustion experiments.

— Four basic temperature prof les have been chosen to simulate different temperature
gradient. The step between the temperature of two consecutive synthetics f ames
is AT = 50 K, with a variation in the hottest cell between 540 K and 1140 K.
And for each of these variations of temperature, a variation of cell’s length is done.
These variation have an step of Aw = 0.02 meters for each cell which means a
total step variation AW = 0.1 meters, covering a range between 0.1 and 2 meters.
These profile have been adjusted to a spatial discretization of fve cells. All the
value ranges for temperature and length have been chosen to be representative for
hot gases clouds associated to fossil fuel combustion.

— Experimental noise of spectra has not been simulated in order to extract pure fea-
tures associated with physical characteristics.

2.2 Initial Approach: Using the Whole Frequency Spectrum

In a frst phase, the MLP has been designed with a number of inputs equal to the spec-
trum of energy dimensionality. Such that, each input neuron is associated with an energy
channel value. In this case the experiments have been done with 4000 dimensions (high
spectral resolution) which implies 4000 input neurons. As it has been explained in Sect.
2.Ilthe temperature prof le to retrieve is discretized in f ve cells, so the output layer will
have six neurons, one for each temperature cell and another one for the total lengt.
We must include the length because of both parameters, temperature and optical depth
or total length, have infl ence in the composition of the spectrum in agreement to the
Beer’s law.

Different architectures of MLP varying the number of hidden neurons have been
trained until to reach the minimum value in validation error, not allowing overfitti g. In
Table[I] the mean square error over the trained and test data for different architectures
are shown. The table also included the mean error per profle, the mean error on the
hottest cell and standard deviation.

In any of the architectures tested the results obtained have not been good. The MLP
converges in any case without good results and there is not almost difference although
the best results are with 30 hidden neurons. Also could be seen how the train error
and the test error are quite different possibly due to the input dimension and the bad
generalization due to the ratio number of samples and high dimensionality.

2.3 Refined Approach: Feature Selection for Dimension Reduction Based on
PCA

In order to introduce a priori knowledge of the problem in the MLP learning process
and improve the results, a reduction using feature selection approach has been assumed.

! We are assuming in the discretization that all the cells have the same length so we do not
include one per each cell.



Table 1. Errors for the hot gas temperature retrieval using a MLP with 4000 inputs and different
architectures

Hidden neurons MSE Train MSE Test Mean error Mean error  Standard Deviation
per prof le (K) hottest cell (K)

10 0.00418  0.02817 21.65 19.20 16.40
20 0.00178  0.03224 21.08 19.13 14.78
30 0.00099  0.02871 18.80 17.08 13.22
60 0.00989  0.03208 25.88 21.89 17.20

This reduction try to conserve all the information of any possible scenery in a few
original variables stressing the importance of that wavelengths whose inf uence in the
temperature and length prof le are important. To make this selection PCA analysis has
been applied. The central idea of PCA is to reduce the dimensionality of data set where
there are a large number of interrelated variables, while retaining as much as possible
of the variation present in the data set. This reduction is achieved by transforming to a
new set of variables, the principal components, which are uncorrelated, and which are
ordered so that the frst few retain most of the variation present in all of the original
variables[10]. The new base is composed of a set of axes which will be orthogonal
between them and are calculated as a lineal combination of the old base.

Also a dimension reduction could be done using the projections of the original data
over this new base, but during the experiments realized the results obtained have been
always worst than with a feature selection method and consequently has been rejected.
Let C={e},...,eM} be a data set of n spectrum of dimension M variables. Let X be
the covariance matrix of the data set C with dimension M x M. Let V the M x M matrix
with columns equal to eigenvectors of X' and let L be the diagonal M x M matrix with
the M associated eigenvalues (by defi ition X' - V=V - L).

Table 2. Cumulated percentage of variance for spectrum data set generated

Number of PCA components Cumulated variance

1 95.15
2 98.20
3 99.04
4 99.42
5 99.58
14 99.90

The selection of m specifi channels from M variables where m < M, allows to
work with lower dimensionality. This m subset of variables contains virtually all the
information available in M variables. The problem then is to fi d the value of m, and
to decide the subset or subsets of m variables are the best. Here we want to fnd those
variables which best represent the internal variation of C to fnd out which channels
are significan (feature selection). In other cases the linear correlation between PCs



and channels are used to interpret the physical meaning[[L6], or to get a frst retrieval
approximation[[17]. To resolve the question about how many m variables we have to
consider, we must check the number of PCs that account for most of the variation in
a spectrum e, of the data set C. This can also be interpreted as fnding the effective
dimensionality of e,. If e, can be successfully described by only m PCs, then it will
often be true that M can be replaced by a subset m (or perhaps slightly more) variables,
with a relative small loss of information[[L0].

The results of this analysis as cumulative percentage of variance are shown in Ta-
ble 2l Between thirdteen and sixteen principal component, around the 99.9% of the
total variation it is covered and the spectrum could be reconstruct almost without error.
Furthermore we have visualized the projections of the data set for this frst principal
components trying to fnd clusters and we have found that with fve PCs we can do a
frst approximation clustering (k-means) by temperature and total length. It means that
the projections in these frst fve PCs have information about temperature and length
scales.

The results obtained for the temperature retrieval with typical selection methods as
B2(backward selection) and B4(forward selection) were not successful. Thus, to select
a subset of variables from this frst fve PCs, a pick peak selector has been proposed
trying to search for the most important groups coeff cients of each eigenspectrunﬂ in
absolute value. This pick peak selector fir tly look for all the possible peaks in each
eigenspectrum. Then a threshold is established, and every peak greater than this thresh-
old will be chosen. This will allow to catch not only the most relevant information of
each eigenspectrum but the mainly second, third,...and carry on most important vari-
ables either.To limit the number of variables to select the threshold could be adapted to
adjust it.

From a physical point of view each of these eigenspectrums does not contain only
information about the temperature of one area of the gas, but also have information
about the temperature and the spatial distribution over the different channels. Thus, the
pick peak selector tries to get not only variables from one channel area but spread this
selection over all the eigenspectrum guiding the selection.

The frst 6 eigenspectrums can be seen in Fig.[Il Each one gives specif ¢ information
about different channels. Because we are not trying to get the best reduction, a permis-
sive threshold has been assumed to avoid taking out any relevant channel. Finally the
number of channels selected have been 86 which are the inputs for the MLP. As in the
previous approach, different number of hidden neurons has been tested with these input
channels, and the results are shown in Table[3]

This refi ed approach improve quantitatively the results obtained using all the spectra
channels. The mean temperature error retrieval is 3.36 K and 2.81 K in the hottest area
for the best case. In the initial approach (see Table[T)) the train error tends to decrease
to 0 however the test error tends to level off which implies a bad performance in the
MLP learning process. In this ref ned approach both errors tends to decrease together
which means that the learning and generalization processes are working well and also
the results obtained are better.

2 Eigenspectrum is the eigenvector matrix which corresponds to the X matrix of the spectrum
data set.
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Fig. 1. First 6 eigenspectrums, infrared region (2110cm ™! - 2410cm ™)

Table 3. Errors for the hot gas temperature retrieval using a MLP with 86 inputs and different
architectures

Hidden neurons MSE Train MSE Test Mean error ~ Mean error ~ Standard Deviation
per prof le (K) hottest cell (K)

10 0.00058  0.00067 6.82 5.10 4.60
20 0.00021  0.00033 3.94 2.95 3.56
30 0.00024  0.00029 3.36 2.81 2.90
40 0.00022  0.00040 3.72 3.14 3.18

3 Discussion and Conclusions

We have presented here an eff cient approach to prevent the problems related with the
use of high spectral resolution measurements jointly with neural networks for inversion
of radiative transfer equation in combustion processes.

All the samples data set of typical combustions emission gases used in this paper
has been generated with CASIMIR[[13] at high spectral resolution (0.05¢m 1), For this
temperature sounding the range selected has been 2110 — 2410cm ™! and the number



of inputs with the resolution mentioned is 4000. This high number of inputs is a serious
drawback to the use of neural networks in this framework.

The spectral feature selection has been supported by the statistical technique princi-
pal component analysis which has allowed a reduction of dimensionality of factor 46,
choosing those channels specially important for temperature sounding prof les.

The results presented in Sect. 2.2 with 4000 input variables without any previous
treatment over data are not acceptable. The same results are reproduced for different
architectures of MLP without any sensible improvement. The best results obtained in
this approach have been 18.80 K mean error over the whole profle and 17.08 K on
the hottest cell with a standard deviation of 13.22 K. Reference values in literature
show that a temperature measurement with an error of 0.5-1% is considered an accu-
rate measurement in the range of 1200-2000 K. The DT025 sensor is a commercial
”intrusive” thermocouple with a maximum error of 0.5%. This sensor is considered to
be “extremely accurate”.

The digital image system[3]]also has relative errors no greater than 1% in the range
1280-1690 °C. If the results for this initial approach are compared with the intrusive
methods we can conclude that they are not acceptable since the relative medium error
of 2.2% is sensitive bigger than 1.0%. In this case the use of neural networks as inverse
model with 4000 inputs is not useful.

With the refine approach the input dimensionality space is much smaller and the
results obtained have improved signif cantly the previous ones. The best results have a
relative error on the hottest cell of 0.34% which are in the same magnitude that the ones
obtained with the intrusive methods mentioned above but with the advantages explained
in the introduction, as it is not intrusive and can be applied in harsh environments.

From this physical point of view these results are acceptable, and we can conclude
that neural networks techniques can be applied successfully as inverse model for this
problems with a priori treatment of the data. This previous treatment reduce the dimen-
sionality of the inputs conserving the important data and limits the grades of f exibility.
As consequence the MLP convergence is faster and better as has been showed in this
paper.

The use of high spectral feature selection jointly with neural networks can contribute
in an efficien way to retrieve the temperature profile with some advantages over clas-
sical physical-statistical techniques as speed and generalization.
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