Skip to main content

Representation Interest Point Using Empirical Mode Decomposition and Independent Components Analysis

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4203))

Included in the following conference series:

  • 1103 Accesses

Abstract

This paper presents a new interest point descriptors representation method based on empirical mode decomposition (EMD) and independent components analysis (ICA). The proposed algorithm first finds the characteristic scale and the location of the interest points using Harris-Laplacian interest point detector. We then apply the Hilbert transform to each component and get the amplitude and the instantaneous frequency as the feature vectors. Then independent components analysis is used to model the image subspace and reduces the dimension of the feature vectors. The aim of this algorithm is to find a meaningful image subspace and more compact descriptors. Combination the proposed descriptors with an effective interest point detector, the proposed algorithm has a more accurate matching rate besides the robustness towards image deformations.

This work has been supported by NDSF Project 60573182, 69883004 and 50338030.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tuytelaars, T., Van Gool, L.: Matching widely separated views based on affine invariant regions. International Journal of Computer Vision 1(59), 61–85 (2004)

    Article  Google Scholar 

  2. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proceedings of the 8th International Conference on Computer Vision, Vancouver, Canada, pp. 525–531 (2001)

    Google Scholar 

  3. Sivic, J., Zisserman, A.: Video Google: A Text Retrieval Approach to Object Matching in Videos. In: IEEE International Conference on Computer Vision, pp. 1470–1477 (2003)

    Google Scholar 

  4. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 2(60), 91–110 (2004)

    Article  Google Scholar 

  5. Ferrari, V., Tuytelaars, T., Van Gool, L.: Simultaneous object recognition and segmentation by image exploration. In: Proceedings of the 8th European Conference on Computer Vision, Prague, Tcheque Republic, pp. 40–54 (2004)

    Google Scholar 

  6. Deriche, R., Giraudon, G.: A computational approach for corner and vertex detection. International Journal of Computer Vision 10(2), 101–124 (1993)

    Article  Google Scholar 

  7. Baker, S., Nayar, S., Murase, H.: Parametric feature detection. International Journal of Computer Vision 27(1), 27–50 (1998)

    Article  Google Scholar 

  8. Kovesi, P.: Image features from phase congruency. Videre: A Journal of Computer Vision Research 1(3) (1999)

    Google Scholar 

  9. Laganière, R.: Morphological corner detection. In: Proceedings of International conference on Computer Vision, pp. 280–285 (1998)

    Google Scholar 

  10. Johnson, A., Hebert, M.: Object recognition by matching oriented points. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, Puerto Rico, USA, pp. 684–689 (1997)

    Google Scholar 

  11. Zabih, R., Wood_ll, J.: Non-parametric local transforms for computing visual correspondance. In: Proceedings of the 3rd European Conference on Computer Vision, Stockholm, Sweden, pp. 151–158 (1994)

    Google Scholar 

  12. Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  13. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)

    Article  Google Scholar 

  14. Freeman, W., Adelson, E.: The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(9), 891–906 (1991)

    Article  Google Scholar 

  15. Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, Washington, USA, vol. 2, pp. 511–517 (2004)

    Google Scholar 

  16. Koenderink, J., van Doorn, A.: Representation of local geometry in the visual system. Biological Cybernetics 55, 367–375 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lazebnik, S., Schmid, C., Ponce, J.: Sparse texture representation using affine-invariant neighborhoods. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA (2003)

    Google Scholar 

  18. Schaffalitzky, F., Zisserman, A.: Multi-view matching for unordered image sets. In: Proceedings of the 7th European Conference on Computer Vision, Copenhagen, Denmark (2002)

    Google Scholar 

  19. Van Gool, L., Moons, T., Ungureanu, D.: Affine/photometric invariants for planar intensity patterns. In: Proceedings of the 4th European Conference on Computer Vision, Cambridge, England, pp. 642–651 (1996)

    Google Scholar 

  20. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 37(2), 151–172 (2000)

    Article  MATH  Google Scholar 

  21. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  22. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. International Journal of Computer Vision 1(60), 63–86 (2004)

    Article  Google Scholar 

  23. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shin, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Royal Soc. London A 454, 903–995 (1998)

    Article  MATH  Google Scholar 

  24. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

    Google Scholar 

  25. Lindgren, J.T., Hyvärinen, A.: Learning high-level independent component of images through a spectral representation. In: Proceedings of International conference on Pattern Recognition, pp. 72–75 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, D., Li, W., Lu, X., Wang, Y., Li, M. (2006). Representation Interest Point Using Empirical Mode Decomposition and Independent Components Analysis. In: Esposito, F., RaÅ›, Z.W., Malerba, D., Semeraro, G. (eds) Foundations of Intelligent Systems. ISMIS 2006. Lecture Notes in Computer Science(), vol 4203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875604_41

Download citation

  • DOI: https://doi.org/10.1007/11875604_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45764-0

  • Online ISBN: 978-3-540-45766-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics