Skip to main content

Visualizing Transactional Data with Multiple Clusterings for Knowledge Discovery

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4203))

Included in the following conference series:

  • 1152 Accesses

Abstract

Information visualization is gaining importance in data mining and transactional data has long been an important target for data miners. We propose a novel approach for visualizing transactional data using multiple clustering results for knowledge discovery. This scheme necessitates us to relate different clustering results in a comprehensive manner. Thus we have invented a method for attributing colors to clusters of different clustering results based on minimal transversals. The effectiveness of our method VisuMClust has been confirmed with experiments using artificial and real-world data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Afrati, F.N., Gionis, A., Mannila, H.: Approximating a Collection of Frequent Sets. In: Proc. 10th Int. Conf. on Knowledge Discovery and Data Mining (KDD 2004), Seattle, WA, August 2004, pp. 12–19 (2004)

    Google Scholar 

  2. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Database. ACM SIGMOD 22(2), 207–216 (1993)

    Article  Google Scholar 

  3. Berge, C.: Hypergraph. North Holland, Amsterdam (1989)

    Google Scholar 

  4. Berkhin, P.: Survey of Clustering Data Mining Techniques. Technical report, Accrue Software, San Jose, CA (2002)

    Google Scholar 

  5. Cadez, I.V., Heckerman, D., Meek, C., Smyth, P., White, S.: Model-Based Clustering and Visualization of Navigation Patterns on a Web Site. Data Mining and Knowledge Discovery 7(4), 399–424 (2003)

    Article  MathSciNet  Google Scholar 

  6. Cadez, I.V., Smyth, P., Mannila, H.: Probabilistic Modeling of Transaction Data with Applications to Profiling, Visualization, and Prediction. In: Proc. 7th Int. Conf. on Knowledge Discovery and Data Mining (KDD 2001), San Francisco, California, USA, August 2001, pp. 37–46 (2001)

    Google Scholar 

  7. Card, S.K., Makinlay, J.D., Shneiderman, B. (eds.): Readings in Information Visualization. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  8. Durand, N., Crémilleux, B.: ECCLAT: a New Approach of Clusters Discovery in Categorical Data. In: Proc. 22nd SGAI Int. Conf. on Knowledge Based Systems and Applied Artificial Intelligence (ES 2002), Cambridge, UK, pp. 177–190 (2002)

    Google Scholar 

  9. Eiter, T., Gottlob, G.: Identifying the Minimal Transversals of a Hypergraph and Related Problems. SIAM Journal on Computing Archive 24(6), 1278–1304 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Estivill-Castro, V.: Why So Many Clustering Algorithms - A Position Paper. ACM SIGKDD Explorations 4(1), 65–75 (2002)

    Article  MathSciNet  Google Scholar 

  11. Fayyad, U., Grinstein, G.G., Wierse, A.: Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  12. Gionis, A., Mannila, H., Tsaparas, P.: Clustering Aggregation. In: Proc. 21st Int. Conf. on Data Engineering (ICDE 2005), Tokyo, Japan, April 2005, pp. 341–352 (2005)

    Google Scholar 

  13. Gunopulos, D., Khardon, R., Mannila, H., Toivonen, H.: Data Mining, Hypergraph Transversals, and Machine Learning. In: Proc. 16th Symposium on Principles of Database Systems (PODS 1997), Tucson, Arizona, May 1997, pp. 209–216 (1997)

    Google Scholar 

  14. Hébert, C.: Enumerating the Minimal Transversals of a Hypergraph Using Galois Connections. Technical report, Univ. Caen Basse-Normandie, France (2005)

    Google Scholar 

  15. Hipp, J., Güntzer, H., Nakhaeizadeh, G.: Algorithms for Association Rule Mining - A General Survey and Comparison. SIGKDD Explorations 2(1), 58–64 (2000)

    Article  Google Scholar 

  16. Squire, D.M., Squire, D.M.: Visualization of Cluster Changes by Comparing Self-organizing Maps. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 410–419. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Pensa, R., Robardet, C., Boulicaut, J.-F.: A Bi-clustering Framework for Categorical Data. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 643–650. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Suzuki, E., Watanabe, T., Yokoi, H., Takabayashi, K.: Detecting Interesting Exceptions from Medical Test Data with Visual Summarization. In: Proc. 3rd IEEE International Conf. on Data Mining (ICDM 2003), pp. 315–322 (2003)

    Google Scholar 

  19. Tufte, E.: The Visual Display of Quantitative Information. Graphics Press (2001)

    Google Scholar 

  20. Westphal, C., Blaxton, T.: Data Mining Solutions. John Wiley and Sons, New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durand, N., Crémilleux, B., Suzuki, E. (2006). Visualizing Transactional Data with Multiple Clusterings for Knowledge Discovery. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds) Foundations of Intelligent Systems. ISMIS 2006. Lecture Notes in Computer Science(), vol 4203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875604_7

Download citation

  • DOI: https://doi.org/10.1007/11875604_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45764-0

  • Online ISBN: 978-3-540-45766-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics