Skip to main content

Promoter Prediction Using Physico-Chemical Properties of DNA

  • Conference paper
Computational Life Sciences II (CompLife 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4216))

Included in the following conference series:

Abstract

The ability to locate promoters within a section of DNA is known to be a very difficult and very important task in DNA analysis. We document an approach that incorporates the concept of DNA as a complex molecule using several models of its physico-chemical properties. A support vector machine is trained to recognise promoters by their distinctive physical and chemical properties. We demonstrate that by combining models, we can improve upon the classification accuracy obtained with a single model. We also show that by examining how the predictive accuracy of these properties varies over the promoter, we can reduce the number of attributes needed. Finally, we apply this method to a real-world problem. The results demonstrate that such an approach has significant merit in its own right. Furthermore, they suggest better results from a planned combined approach to promoter prediction using both physico-chemical and sequence based techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fickett, J.W., Hatzigeorgiou, A.G.: Eukaryotic Promoter Recognition. Genome Research 7, 861–878 (1997)

    Google Scholar 

  2. Bajic, V.B., Tan, S.L., Suzuki, Y., Sugano, S.: Promoter prediction analysis on the whole human genome. Nature Biotechnology 22, 1467–1473 (2004)

    Article  Google Scholar 

  3. Pedersen, A.G., Baldi, P., Chauvin, Y., Brunak, S.: DNA Structure in Human RNA Polymerase II Promoters. J. Mol. Biol. 281, 663–673 (1998)

    Article  Google Scholar 

  4. Florquin, K., Saeys, Y., Degroeve, S., Rouze, P., Van de Peer, Y.: Large-scale structural analysis of the core promoter in mammalian and plant genomes. Nucl. Acids Res. 33, 4255–4264 (2005)

    Article  Google Scholar 

  5. Fukue, Y., Sumida, N., Nishikawa, J.-i., Ohyama, T.: Core promoter elements of eukaryotic genes have a highly distinctive mechanical property. Nuc. Acids Res. 32, 5834–5840 (2004)

    Article  Google Scholar 

  6. Fukue, Y., Sumida, N., Tanase, J.-i., Ohyama, T.: A highly distinctive mechanical property found in the majority of human promoters and its transcriptional relevance. Nuc. Acids Res. 33, 3821–3827 (2005)

    Article  Google Scholar 

  7. Kanhere, A., Bansal, M.: Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes. Nucleic Acids Research 33, 3165–3175 (2005)

    Article  Google Scholar 

  8. Choi, C.H., Kalosakas, G., Rasmussen, K., Hiromura, M., Bishop, A.R., Usheva, A.: DNA dynamically directs its own transcription initiation. Nucleic Acids Res. 32, 1584–1590 (2004)

    Article  Google Scholar 

  9. Tsai, L., Luo, L., Sun, Z.: Sequence-dependent flexibility in promoter sequences. J. Biomol. Struct. Dyn. 20, 127–134 (2002)

    Google Scholar 

  10. Gabrielian, A., Landsman, D., Bolshoy, A.: Curved DNA in promoter sequences. In Silico Biol. 1, 183–196 (1999-2000)

    Google Scholar 

  11. Lisser, S., Margalit, H.: Determination of common structural features in Escherichia coli promoters by computer analysis. Eur. J. Biochem. 223, 823–830 (1994)

    Article  Google Scholar 

  12. Wang, H., Noordeweier, M., Benham, C.J.: Stress-Induced DNA Duplex Destabilization (SIDD) in the E. coli Genome: SIDD Sites Are Closely Associated With Promoters. Genome Research 14, 1575–1584 (2004)

    Article  Google Scholar 

  13. Ohler, U., Niemann, H., Liao, G., Rubin, G.: Joint modeling of DNA sequence and physical properties to improve eukaryotic promoter recognition. Bioinformatics 17, S199–S206 (2001)

    Google Scholar 

  14. Baldi, P., Chauvin, Y., Brunak, S., Anders, J.G., Pedersen, G.: Computational Applications of DNA Structural Scales. In: Int. Conf. Intell. Syst. Mol. Biol., pp. 35–42 (1998)

    Google Scholar 

  15. Ota, T., Suzuki, Y., Nishikawa, T., Otsuki, T., Sugiyama, T., Irie, R., Wakamatsu, A., Hayashi, K., Sato, H., Nagai, K., Kimura, K., Makita, H., Sekine, M., Obayashi, M., Nishi, T., Shibahara, T.: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat. Genet. 36, 40–45 (2004)

    Article  Google Scholar 

  16. Suzuki, Y., Sugano, S.: Construction of a full-length enriched and a 5’-end enriched cDNA library using the oligo-capping method. Methods Mol. Biol. 221, 73–91 (2003)

    Google Scholar 

  17. Suzuki, Y., Yamashita, R., Sugano, S., Nakai, K.: DBTSS, DataBase of Transcriptional Start Sites: progress report 2004. Nucleic Acids Res. 32 (Database issue), 78–81 (2004)

    Article  Google Scholar 

  18. Ivanov, V.I., Minchenkova, L.E.: The A-form of DNA: in search of the biological role. Mol. Biol. (Mosk) 28, 1258–1271 (1994)

    Google Scholar 

  19. Sivolob, A.V., Khrapunov, S.N.: Translational positioning of nucleosomes on DNA: the role of sequence-dependent isotropic DNA bending stiffness. J. Mol. Biol. 247, 918–931 (1995)

    Article  Google Scholar 

  20. Blake, R.D., Delcourt, S.G.: Thermal stability of DNA. Nucleic Acids Res. 26, 3323–3332 (1998)

    Article  Google Scholar 

  21. Breslauer, K., Frank, R., Blocker, H., Marky, L.: Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83, 3746–3750 (1986)

    Article  Google Scholar 

  22. Satchwell, S.C., Drew, H.R., Travers, A.A.: Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol. 191, 659–675 (1986)

    Article  Google Scholar 

  23. el Hassan, M., Calladine, C.: Propeller-twisting of base-pairs and the conformational mobility of dinucleotide steps in DNA. J. Mol. Biol. 259, 95–103 (1996)

    Article  Google Scholar 

  24. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  25. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  26. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Computation 13, 637–649 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uren, P., Cameron-Jones, R.M., Sale, A. (2006). Promoter Prediction Using Physico-Chemical Properties of DNA. In: R. Berthold, M., Glen, R.C., Fischer, I. (eds) Computational Life Sciences II. CompLife 2006. Lecture Notes in Computer Science(), vol 4216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875741_3

Download citation

  • DOI: https://doi.org/10.1007/11875741_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45767-1

  • Online ISBN: 978-3-540-45768-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics