Abstract
Spectral analysis of DNA microarray gene expressions time series data is important for understanding the regulation of gene expression and gene function of the Plasmodium falciparum in the intraerythrocytic developmental cycle. In this paper, we propose a new strategy to analyze the cell cycle regulation of gene expression profiles based on the combination of singular spectrum analysis (SSA) and autoregressive (AR) spectral estimation. Using the SSA, we extract the dominant trend of data and reduce the effect of noise. Based on the AR analysis, high resolution spectra can be produced. Experiment results show that our method can extract more genes and the information can be useful for new drug design.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gardner, M.J., Hall, N., Fung, E., White, O., Berriman, M., et al.: Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002)
Bozdech, Z., Llinas, M., Pulliam, B.L., Wong, E.D., Zhu, J.C., DeRisi, J.L.: The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. Plos. Biology 1, 1–16 (2003)
Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., et al.: Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces serevisiae by microarray hybridization. Mol. Biol. Cell. 9, 3273–3297 (1998)
Le Roch, K.G., Zhou, Y.Y., Blair, P.L., Grainger, M., Moch, J.K., et al.: Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 1503–1508 (2003)
Rajarajeswari, B., Eyke, H., Nils, W., Jörg, K.: Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics 21, 1069–1077 (2005)
Vautard, R., Yiou, P., Ghil, M.: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D 58, 95–126 (1992)
Golyandina, N., Nekrutkin, V., Zhigljavsky, A.: Analysis of time series structure: SSA and related techniques. Chapman & Hall/CRC, Boca Raton (2001)
Vautard, R., Ghil, M.: Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35, 395–424 (1989)
Liu, L., Hawkins, D.M., Ghosh, S., Yong, S.S.: Robust singular value decomposition analysis of microarray data. PNAS 100, 13167–13172 (2003)
Marple, S.L.: Digital spectral analysis: with applications. Prentice-Hall, Englewood Cliffs (1987)
Yan, H. (ed.): Signal Processing for Magnetic Resonance Imaging and Spectroscopy. Marcel Dekker, New York (2002)
Yeung, L.K., Szeto, L.K., Liew, W.C., Yan, H.: Dominant spectral component analysis for transcriptional regulations using microarray time series data. Bioinformatics 20, 742–749 (2004)
Keppenne, C.L., Ghil, M.: Adaptive filtering and prediction of the Southern Oscillation index. J. Geophys. Res. 97, 20449–20454 (1992)
Penland, C., Ghil, M., Weickmann, K.M.: Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum. J. Geophys. Res. 96, 22659–22671 (1991)
Rustici, G., Mata, J., Kivinen, K., Lió, P., Penkett, C.J., et al.: Periodic gene expression program of the fission yeast cell cycle. Nature Genetics 36, 809–817 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Du, L., Wu, S., Liew, A.WC., Smith, D.K., Yan, H. (2006). Parametric Spectral Analysis of Malaria Gene Expression Time Series Data. In: R. Berthold, M., Glen, R.C., Fischer, I. (eds) Computational Life Sciences II. CompLife 2006. Lecture Notes in Computer Science(), vol 4216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875741_4
Download citation
DOI: https://doi.org/10.1007/11875741_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45767-1
Online ISBN: 978-3-540-45768-8
eBook Packages: Computer ScienceComputer Science (R0)