Abstract
In Chemometrics it is often the norm to develop regression methods for analysing non-linear multivariate data by using the observations (measurements) as the sole constraint. This is the case regardless of the nature of the regression method (parametric or non-parametric)[1]. In this article we present the development of a regression model using data assimilation[2] – A technique that takes into account additional available information about the “system” which the model is to represent. The new approach shows substantial improvement over the “conventional” methods[3] against which it has been compared.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brown, T.B., Brown, S.D.: Journal of Chemometrics 8, 391 (1994)
Daley, R.: Atmospheric Data Analysis. Cambridge Atmospheric and Space Science Series. Cambridge University Press, Cambridge (1991)
Glen, R.C., Rose, V.S., Lindon, J.C., Ruane, R.J., Wilson, I.D., Nicholson, J.K.: J. Pl. Chrom. 4, 432 (1991)
Kim, S.: Korean Journal of Remote Sensing 17, 345 (2001)
Gleb, A.: Applied Optimal Filtering. MIT Press, Cambridge (1974)
Fukumori, I.: Data assimilation by models. In: Fu, L.-L., Cazenavo, A. (eds.) Satellite Altimetry and Earth Sciences, p. 237. Academic, London (2001)
Talagrand, O., Courtier, P.: Quart. J. Roy. Meteor. Soc. 113, 1311 (1987)
Kalman, R.E.: Transaction of the ASME–Journal of Basic Engineering 35 (1960)
Petritis, K., Kangas, L.J., Ferguson, P.L., Anderson, G.A., Pasa-Tolic, L., Lipton, M.S., Auberry, K.J., Strittmatter, E.F., Shen, Y., Zhao, R., Smith, R.D.: Anal. Chem. 75, 1039–1048 (2003)
Abraham, M.H., Ibrahim, A., Zissimos, A.M.: Journal of Chromatography A 1037, 29–47 (2004)
Hanai, T.: Journal of Chromatography A 1027, 279–2871 (2004)
Sybyl, Tripos Associates, St.Louis, Mo., USA
Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Englewood Cliffs (1999)
Verikas, A., Bacauskiene, M.: Chemometrics and Intelligent Laboratory Systems 67, 187 (2003)
Zhang, Y.M., Li, X.R.: IEEE Transactions on Neural Networks 10, 930 (1999)
Amari, S., Munta, N., Muller, K.R., Finke, M., Yang, H.: Statistical theory of overfitting–is cross-validation asymptotically effective?’. In: Touretzky, S., Mozer, M.C., Hasselmo, M. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 176–178. MIT Press, Massachusetts (1996)
Bierman, G.: Factorization Methods for Discrete Sequential Estimation. Academic Press, London (1977)
Lary, D.J., Mussa, H.Y.: IEEE Transactions on Neural Networks (submitted)
Singhal, S., Wu, L.: Training Feedforward Neural Networks. In: Proc. Int. Conf. ASSP, p. 1187 (1989)
Puskorius, G.V., Feldkalmp, L.A.: IEEE Transactions on Neural Networks 5, 279 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mussa, H.Y., Lary, D.J., Glen, R.C. (2006). Building Structure-Property Predictive Models Using Data Assimilation. In: R. Berthold, M., Glen, R.C., Fischer, I. (eds) Computational Life Sciences II. CompLife 2006. Lecture Notes in Computer Science(), vol 4216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875741_7
Download citation
DOI: https://doi.org/10.1007/11875741_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45767-1
Online ISBN: 978-3-540-45768-8
eBook Packages: Computer ScienceComputer Science (R0)