Towards an Offline XML-based Strategy
for Answering Questions

David Ahn, Valentin Jijkoun, Karin Miiller
Maarten de Rijke, and Erik Tjong Kim Sang

ISLA, University of Amsterdam, Kruislaan 403
1098 SJ Amsterdam, The Netherlands
{ahn, jijkoun, kmueller, mdr, erikt}@science.uva.nl

Abstract. The University of Amsterdam participated in the Question
Answering (QA) Track of CLEF 2005 with two runs. In comparison with
previous years, our focus this year was adding to our multi-stream ar-
chitecture a new stream that uses offline XML annotation of the corpus.
We describe the new work on our QA system, present the results of our
official runs, and note areas for improvement based on an error analysis.

1 Introduction

For our participation in question answering (QA) tracks at past editions of
both CLEF and TREC, we have developed a multi-stream QA architecture
which incorporates several different approaches to identifying candidate answers,
complemented with filtering and ranking mechanisms to choose the best an-
swer [1, 2, 3, 4]. For the 2005 edition of the QAQCLEF track, we devoted some
effort to improving this architecture, in particular the table stream (see §2.2).
Also, to accommodate the new temporally restricted questions, a dedicated mod-
ule was developed (§2.3). Most of our efforts, however, were aimed at implement-
ing XQuesta, a pure QA-as-XML-retrieval stream, in which the target collection
is automatically annotated with linguistic information at indexing time, incom-
ing questions are converted to semistructured queries, and evaluation of these
queries yields a ranked list of candidate answers.

While our system provides wrong answers for less than 40% of the test ques-
tions, we identified obvious areas for improvement. First, we should work on
definition extraction so that both questions asking for definitions and questions
requiring resolving definitions can be better answered. Second, we should exam-
ine inheritance of document links in the answer tiling process to help the associ-
ated module avoid unsupported answers. Most importantly, we should improve
our answer filtering module to ensure that the semantic class of the generated
answer corresponds with the class required by the question.

The paper is organized as follows. In §2, we describe the architecture of
our QA system, including improvements and additions for QAQCLEF 2005. In
83, we describe the new XQuesta stream. In §4, we detail our official runs. In
84, we discuss the results we obtained and give a preliminary analysis of the
performance of different components of the system. We conclude in §5.



r |
i i e
e i Shecking i

question
classification

Fig. 1: Quartz-2005: the University of Amsterdam’s Dutch Question Answering System.

2 System overview

Essentially, our system architecture implements multiple copies of a standard QA
architecture. Each copy (or stream) is a complete standalone QA system that
produces ranked answers, though not necessarily for all types of questions. The
overall system’s answer is then selected from the combined pool of candidates
through a combination of merging and filtering techniques. For a reasonably
detailed discussion of our QA system architecture we refer to [3]. A diagram of
the system architecture is given in Figure 1.

The first stage of processing, question processing, is common to all the streams.
Each of the 200 questions is tagged, parsed, and assigned a question class based
on our question classification module. Finally, the expected answer type is de-
termined. See §3.2 for more details about question processing for the XQuesta
stream, in particular.

There are seven streams in our system this year, four of which use the CLEF
corpus to answer questions and three of which use external sources of informa-
tion. Four streams are unchanged from our system for last year’s evaluation [3]:
the Pattern Match and Ngrams streams for each of the CLEF corpus and the
web. The focus of our efforts this year resulted in our XQuesta stream, which
is described in §3. We also added a stream that consults Wikipedia (§2.1) and
expanded the table stream (§2.2).

The methods we employ to merge, filter, and choose among the answer can-
didates generated by the seven streams, as well as to justify answers (i.e., find
supporting documents in the Dutch CLEF corpus for answers obtained outside
the corpus), also remain unchanged from our system for last year’s evaluation,
except for the temporally restricted questions new to this year’s evaluation. For
these questions, we re-rank candidate answers using temporal information; see
§2.3 for more details.

2.1 Wikipedia stream

Like our streams that consult the web rather than the Dutch CLEF corpus,
this stream also uses an external corpus—the Dutch Wikipedia (http://nl.
wikipedia.org), an open-content encyclopedia in Dutch. However, since this
corpus is much cleaner than newspaper text, the stream operates in a different


http://nl.wikipedia.org
http://nl.wikipedia.org

manner. First, the focus of the question—usually the main named entity—is
identified. Then, this entity’s encyclopedia entry is looked up; since Wikipedia
is standardized to a large extent, this information has a template-like nature.
Finally, using knowledge about the templates used in Wikipedia, information
such as DATE-OF-DEATH and FIRST-NAME can easily be extracted.

2.2 Improvements to the table stream

To the tables used in 2004, we have added a table which contains definitions
extracted offline with two rules: one extracts definitions from appositions, and
the other creates definitions by combining proper nouns with preceding common
nouns. This table is used in parallel with the existing roles table, which contains
definitions only for people. The new table contains more than three times as
many entries (611,077) as the existing one.

Unlike earlier versions of the table module, all tables are now stored in SQL
format and made available in a MySQL database. The type of an incoming
question is converted to sets of tuples containing three elements: table, source
field, and target field. The table code searches in the source field of the specified
table for a pattern and, when a match is found, keeps the contents of the corre-
sponding target field as a candidate answer. Ideally, the search pattern would be
computed by the question analysis module but currently we use separate code
for this task. The table code also uses backoff strategies (case insensitive vs. case
sensitive, exact vs. inexact match) in case a search returns no matches.

The table fields only contain noun phrases that are present in the text. This
means that they can be used for answering questions such as Who is the President
of Serbia? because phrases such as President of Serbia can usually be found in
the text. However, in general, this stream cannot be used for answering questions
such as Who was the President of Serbia in 19997 because the modifier in 1999
often does not follow the profession.

2.3 Temporal restrictions

Twenty-six questions in this year’s QA track are tagged as temporally restricted.
Such questions ask for information relevant to a particular time; the time in
question may be given explicitly by a temporal expression (or timez), as in:

(1) Q0094: Welke voetballer ontving “De Gouden Bal” in 1995%
Which footballer won the European Footballer of the Year award in 19957

or it may be given implicitly, with respect to another event, as in:

(2) Q0008: Wie speelde de rol van Superman voordat hij verlamd werd?
Who played the role of Superman before he was paralyzed?

Our system takes advantage of these temporal restrictions to re-rank candi-
date answers for these questions. Because there is already a module to anno-
tate timexes (see §3.1), we limit ourselves to temporal restrictions signalled by



timexes. Handling event-based restrictions would require identifying (and possi-
bly temporally locating) events, which is a much more difficult problem.

For each temporally restricted question, the temporal re-ranker tries to iden-
tify an explicit temporal restriction by looking for temporal prepositions (e.g.,
in, op, tijdens, voor, na) and timexes in the question. If it succeeds, it proceeds
with re-ranking the candidate answers.

For each candidate answer, timexes occurring in sentences containing the
answer and question focus (if there is one) are extracted from the justification
document, along with the document timestamp. The re-ranker checks whether
these timexes are compatible with the restriction. For each compatible timex,
the score for the candidate answer is boosted; for each incompatible timex, the
score is lowered. The logic involved in checking compatibility of a timex with a
temporal restriction is relatively straightforward; the only complications come
in handling times of differing granularities.

3 XQuesta

The XQuesta stream implements a QA-as-XML-retrieval approach [5, 6]. The
target collection is automatically annotated with linguistic information offline.
Then, incoming questions are converted to semistructured queries, and evalua-
tion of these queries yields a ranked list of candidate answers. We describe the
three stages in detail.

3.1 Offline annotation

We automatically processed the Dutch QA collection, identifying sentences and
annotating them syntactically and semantically. We used the TnT tagger [7]
to tag the collection for parts of speech and syntactic chunks, with the CGN
corpus [8] as training data. The same tagger, trained on CoNLL-2002 data [9]
was used to identify named entities, and a hand-coded rule-based system, to
identify temporal expressions.

In total, we use four annotation layers. The first layer provides information
about part-of-speech tags:

(3) <LID>de</LID> <ADJI>machtige</ADI> <N>burgemeester</N> <VZ>van</VZ>
the powerful mayor of ...

Example (4) shows the second annotation layer: non-recursive syntactic chunks—
noun phrases (NP), verb phrases (VP) and prepositional phrases (PP).

(4) <NP>de machtige burgemeester</NP> <PP>van</PP> <NP>Moskou</NP> ,
<NP>Joeri Loezjkov</NP> | <VP>veroordeelt</VP> <NP>dat</NP>

Example (5) shows the third annotation layer: named entities—persons (PER),
organizations (ORG), locations (LOC), and miscellaneous entities (MISC).

(5) de machtige burgemeester van <NE type="LOC">Moskou</NE> ,
<NE type="PER">Joeri Loezjkou</NE> , veroordeelt dat



The next two examples show annotation of temporal expressions, normalized to
ISO 8601 format.

(6) Luc Jouret werd in <TIMEX val="1947">1947</TIMEX> geboren.
Luc Jouret was born in 1947.

(7) FEkeus verliet Irak <TIMEX val="1994-10-06">donderdagmorgen</TIMEX>
Ekeus left Iraq Thursday morning

Normalization is more complicated in Example (7); in order to determine that
donderdagmorgen refers to 1994-10-06, the system uses the document timestamp
(in this case, 1994-10-08) and some simple heuristics to compute the reference.
The four annotation layers of the collection are stored in separate XML files
to simplify maintenance. Whenever the XQuesta stream requests a document
from the collection, all annotations are automatically merged into a single XML
document providing full simultaneous access to all annotated information.

3.2 Question analysis

The current question analysis module consists of two parts. The first part deter-
mines possible question classes, such as DATE_BIRTH for the question shown in
Example (8).

(8) Q0014: Wanneer is Luc Jouret geboren?
When was Luc Jouret born?

We use 31 different question types, some of which belong to a more general class:
for example, DATE_BIRTH and DATE_DEATH are subtypes of the class DATE. The
assignment of the classes is based on manually compiled patterns.

The second part of our question analysis module is new. Depending on the
predicted question class, an expected answer type is assigned. The latter de-
scribes syntactic, lexical or surface requirements to be met by the possible
answers. The restrictions are formulated as XPath queries, which are used to
extract specific information from our preprocessed documents. E.g., the XPath
queries corresponding to question types PERSON and DATE are NE [@type="PER"]
and TIMEX [@val="/"\d/], respectively. Table 1 displays the manually developed
rules for mapping the question classes to the expected answer types.

3.3 Extracting and ranking answers

As described in §3.2, incoming questions are mapped to retrieval queries (the
question text) and XPath queries corresponding to types of expected answers.

Retrieval queries are used to locate relevant passages in the collection. For
retrieval, we use nonoverlapping passages of at least 400 characters starting and
ending at paragraph boundaries. Then, the question’s XPath queries are evalu-
ated on the top 20 retrieved passages, giving lists of XML elements correspond-
ing to candidate answers. For example, for the question in Example (8) above,
with the generated XPath query “TIMEX[@val=~/"\d/]”, the value “1947” is
extracted from the annotated text in Example (6).



Question class

Restrictions on the type of answer

ABBREVIATION
AGE
CAUSE-REASON
CITY_CAPITAL
COLOR

DATE_DEATH, DATE_BIRTH, DATE
DEFINITION_PERSON

DEFINITION
DISTANCE
DISTINCTION
EXPANSION
HEIGHT
LANGUAGE
LENGTH
LOCATION
MANNER
MONETARY _UNIT
NAME
NUMBER_PEOPLE

word in capital letters
numeric value, possible word: jarige
sentence

LOC

adjective

TIMEX, digital number
sentence

noun phrase or sentence
numeric value

noun phrase or a sentence
MISC or ORG, noun phrase
numeric value

MISC

numeric value

LOC

sentence

MISC

named entity

numeric value, noun phrase

NUMBER numeric value
ORGANIZATION ORG
PERSON PER
SCORE, SIZE, SPEED, SUM_OF_MONEY numeric value
SYNONYM_NAME PER
TEMPERATURE, TIME_PERIOD numeric value

Table 1: Overview of the mapping rules from question classes to answer types

The score of each candidate is calculated as the sum of retrieval scores of all
passages containing the candidate. Furthermore, the scores are normalized using
web hit counts, producing the final ranked list of XQuesta’s answer candidates.

4 Results and analysis

We submitted two Dutch monolingual runs. The run uams051nlnl used the
full system with all streams described above and final answer selection, while
uams052nlnl, on top of this, used an additional stream: the XQuesta stream with
paraphrased questions. We generated paraphrases simply, by double-translating
questions (from Dutch to English and then back to Dutch) using Systran, an au-
tomatic MT system. Question paraphrases were only used for query formulation
at the retrieval step; question analysis (identification of question types, expected
answer types and corresponding XPath queries) was performed on the original
questions. Our idea was to see whether paraphrasing retrieval queries would help
to find different relevant passages and lead to more correctly answered questions.

The two runs proved to be quite similar. Different answers were only gener-
ated for 13 of the 200 questions. The results of the assessment were even more
similar. Both runs had 88 correct answers and 5 unsupported answers. Run
uams051nlnl had one less inexact answer than uams052nlnl (28 vs. 29) and one
more wrong answer (79 vs. 78). We were surprised about the large number of in-
exact answers. When we examined the inexact answers of the first run, we found
that a disproportional number of these were generated for definition questions:
85% (only 30% of the questions ask for definitions). Almost half of the errors (13



out of 28) were caused by the same problem: determining where a noun phrase
starts, for example, leader of the extreme right group as an answer to What is
Eyal? where extreme right group would have been correct. This extraction prob-
lem also affected the answers for questions that provided a definition and asked
for a name. We expect that this problem can be solved by a check of the semantic
class of the question focus word and head noun of the answer, both in the answer
extraction process and in answer postprocessing. Such a check would also have
prevented seven of the 15 other incorrect answers of this group.

When we examined the assessments of the answers to the three different
question types, we noticed that the proportion of correct answers was the same
for definition questions (45%) and factoid questions (47%) but that temporally
restricted questions seemed to cause problems (27% correct). Of the 18 incorrect
answers in the latter group, four involved an answer which would have been
correct in another time period (questions Q0078, 0084, Q0092 and Q0195). If
these questions had been answered correctly, the score for this category would
have an acceptable 46% (including the incorrectly assessed answer for Q0149).

The temporal re-ranking module described in §2 did make a small positive
contribution. For two temporally restricted questions, the highest ranking can-
didate answer before the temporal re-ranking module was applied was incorrect,
but the application of the temporal re-ranking module boosted the correct an-
swer to the top position. Additionally, the temporal re-ranking module never
demoted a correct answer from the top position.

The answers to the temporally restricted questions are indicative of the over-
all problems of the system. Of the other 14 incorrect answers, only five were of
the expected answer category while nine were of a different category. In the 62
answers to factoid and definition questions that were judged to be wrong, the
majority (58%) had an incorrect answer class. An extra answer postprocessing
filter that compares the semantic category of the answer and the one expected
by the question would prevent such mismatches.

Our system produced five answers which were judged to be unsupported.
One of these was wrong, one was right, and a third was probably combined from
different answers, with a link to a document containing only a part of the answer
being kept. The remaining two errors were probably also caused by a document
link which should not have been kept but the reason for this is unknown.

This error analysis suggests three possible improvements. First, we should
work on definition extraction so that questions asking for definitions and ques-
tions requiring the resolution of definitions can be better answered. Second, we
should examine inheritance of document links in the answer tiling process to
make sure that the associated module avoids unsupported answers. Most impor-
tantly, we should improve answer filtering to make sure that the semantic class
of the generated answer corresponds with the class required by the question.

5 Conclusion

Most of our efforts for the 2005 edition of the QAQCLEF track were aimed at
implementing XQuesta, a “pure” QA-as-XML-retrieval stream, as part of our



multi-stream question answering architecture. For XQuesta, the target collec-
tion is automatically annotated with linguistic information at indexing time,
incoming questions are converted to semistructured queries, and evaluation of
these queries gives a ranked list of candidate answers. The overall system pro-
vides wrong answers for less than 40% of the questions. Our ongoing work is
aimed at addressing the main sources of error: definition extraction, inheritance
of document links in answer tiling, and semantically informed answer filtering.

Acknowledgments

This research was supported by various grants from the Netherlands Organiza-
tion for Scientific Research (NWO). Valentin Jijkoun, Karin Miiller, and Maarten
de Rijke were supported under project number 220-80-001. Erik Tjong Kim Sang
and Maarten de Rijke were supported under project number 264-70-050. David
Ahn and Maarten de Rijke were supported under project number 612.066.302.
In addition, Maarten de Rijke was also supported by grants from NWO, under
project numbers 017.001.190, 365-20-005, 612-13-001, 612.000.106, 612.000.207,
612.069.006, and 640.001.501.

6 References

[1] Jijkoun, V., Mishne, G., de Rijke, M.: How frogs built the Berlin Wall. In: Pro-
ceedings CLEF 2003. LNCS, Springer (2004)

[2] Jijkoun, V., Mishne, G., Monz, C., de Rijke, M., Schlobach, S., Tsur, O.: The
University of Amsterdam at the TREC 2003 Question Answering Track. In: Pro-
ceedings TREC 2003. (2004) 586593

[3] Ahn, D., Jijkoun, V., Miiller, K., de Rijke, M., Schlobach, S., Mishne, G.: Making
stone soup: Evaluating a recall-oriented multi-stream question answering stream
for dutch. In Peters, C., Clough, P., Jones, G., Gonzalo, J., Kluck, M., Magnini,
B., eds.: Multilingual Information Access for Text, Speech and Images: Results of
the Fifth CLEF Evaluation Campaign. LNCS 3491, Springer Verlag (2005)

[4] Ahn, D., Jijkoun, V., Mishne, G., Miiller, K., de Rijke, M., Schlobach, S.: Using
wikipedia at the trec qa track. In Voorhees, E., Buckland, L., eds.: The Thirteenth
Text Retrieval Conference (TREC 2004), Gaithersburg, Maryland (2005)

[5] Litkowksi, K.: Use of metadata for question answering and novelty tasks. In:
Proceedings of the Twelfth Text REtrieval Conference (TREC 2003). (2004)

[6] Ogilvie, P.: Retrieval using structure for question answering. In Mihajlovic, V.,
Hiemstra, D., eds.: Proceedings of the First Twente Data Management Workshop
(TDM’04). (2004) 15-23

[7] Brants, T.: TnT — A Statistical Part-Of-Speech tagger. Saarland University (2000)

[8] Schuurman, I., Schouppe, M., Hoekstra, H., van der Wouden, T.: CGN, an Anno-
tated Corpus of Spoken Dutch. In: Proceedings of the 4th International Workshop
on Linguistically Interpreted Corpora (LINC-03), Budapest, Hungary (2003)

[9] Tjong Kim Sang, E.F.: Introduction to the CoNLL-2002 Shared Task: Language-
Independent Named Entity Recognition. In: Proceedings of CoNLL-2002, Taipei,
Taiwan (2002) 155-158



