Abstract
This paper reports results for the University of Maryland’s participation in the CLEF-2005 Cross-Language Speech Retrieval track. Techniques that were tried include: (1) document expansion with manually created metadata (thesaurus keywords and segment summaries) from a large side collection, (2) query refinement with pseudo-relevance feedback, (3) keyword expansion with thesaurus synonyms, and (4) cross-language speech retrieval using translation knowledge obtained from the statistics of a large parallel corpus. The results show that document expansion and query expansion using blind relevance feedback were effective, although optimal parameter choices differed somewhat between the training and evaluation sets. Document expansion in which manually assigned keywords were augmented with thesaurus synonyms yielded marginal gains on the training set, but no improvement on the evaluation set. Cross-language retrieval with French queries yielded 79% of monolingual mean average precision when searching manually assigned metadata despite a substantial domain mismatch between the parallel corpus and the retrieval task. Detailed failure analysis indicates that speech recognition errors for named entities were an important factor that substantially degraded retrieval effectiveness.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allan, J.: Perspectives on information retrieval and speech. In: Information Retrieval Techniques for Speech Applications, pp. 1–10. Springer, London (2001)
Darwish, K., Oard, D.W.: Probabilistic structured query methods. In: Proceedings of the 21st Annual 26th International ACM SIGIR Conference on Research and Development in Information Retrieval, July 2003, pp. 338–344. ACM Press, New York (2003)
Garofolo, J.S., Auzanne, C.G.P., Voorhees, E.E.: The TREC spoken document retrieval track: A successful story. In: Proceedings of the Nineth Text REtrieval Conference (TREC-9) (2000), http://trec.nist.dov
Koehn, P.: Europarl: A multilingual corpus for evaluation of machine translation (unpublished draft, 2002)
Oard, D.W., Soergel, D., Doermann, D., Huang, X., Murray, G.C., Wang, J., Ramabhadran, B., Franz, M., Gustman, S., Mayfield, J., Kharevych, L., Strassel, S.: Building an information retrieval test collection for spontaneous conversational speech. In: Proceedings of the 20th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 41–38 (2004)
Robertson, S.E., Sparck-Jones, K.: Simple proven approaches to text retrieval. Cambridge University Computer Laboratory (1997)
Singhal, A., Choi, J., Hindle, D., Pereira, F.: ATT at TREC-7. In: The Seventh Text REtrieval Conference, pp. 239–252 (November 1998), http://trec.nist.gov
Singual, A., Pereira, F.: Document expansion for speech retrieval. In: Proceedings of the 22st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 34–41. ACM Press, New York (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, J., Oard, D.W. (2006). CLEF-2005 CL-SR at Maryland: Document and Query Expansion Using Side Collections and Thesauri. In: Peters, C., et al. Accessing Multilingual Information Repositories. CLEF 2005. Lecture Notes in Computer Science, vol 4022. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11878773_88
Download citation
DOI: https://doi.org/10.1007/11878773_88
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45697-1
Online ISBN: 978-3-540-45700-8
eBook Packages: Computer ScienceComputer Science (R0)