Skip to main content

On the Computational Power of Brane Calculi

  • Conference paper
Transactions on Computational Systems Biology VI

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 4220))

Abstract

Brane calculi are a family of biologically inspired process calculi proposed in [3] for modeling the interactions of dynamically nested membranes.

In [3] a basic calculus for membranes interactions – called Phago/Exo/ Pino – is proposed, whose primitives are inspired by endocytosis and exocytosis. An alternative basic calculus – called Mate/Bud/Drip and inspired by membrane fusion and fission – is also outlined and shown to be encodable in Phago/Exo/Pino in [3].

In this paper we investigate and compare the expressiveness of such two calculi w.r.t. their ability to act as computational devices.

We show that (a fragment of) the Phago/Exo/Pino calculus is Turing powerful, by providing an encoding of Random Access Machines.

On the other hand, we show the impossibility to define a “faithful” encoding of Random Access Machines in the Mate/Bud/Drip calculus, by providing a proof of the decidability of the existence of a divergent computation in Mate/Bud/Drip.

Revised and full version of the extended abstract in Proc. Workshop on Computational Methods in Systems Biology, Edinburgh, April 2005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Busi, N.: On the Computational Power of the Mate/Bud/Drip Brane Calculus: Interleaving vs. Maximal Parallelism. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 144–158. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Busi, N., Zavattaro, G.: On the expressive power of movement and restriction in pure mobile ambients. Theoretical Computer Science 322, 477–515 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cardelli, L.: Brane Calculi - Interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Cardelli, L.: Abstract Machines for System Biology. Draft (2005)

    Google Scholar 

  5. Cardelli, L., Gordon, A.D.: Mobile Ambients. Theoretical Computer Science 240(1), 177–213 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cardelli, L., Păun, G.: An universality result for a (Mem) Brane Calculus based on mate/drip operations. International Journal of Foundations of Computer Science (to appear)

    Google Scholar 

  7. Danos, V., Pradalier, S.: Projective Brane Calculus. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 134–148. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Finkel, A., Schnoebelen, P.: Well-Structured Transition Systems Everywhere! Theoretical Computer Science 256, 63–92 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Freund, R.: Asynchronous P Systems and P Systems Working in the Sequential Mode. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 36–62. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Higman, G.: Ordering by divisibility in abstract algebras. In: Proc. London Math. Soc., vol. 2, pp. 236–366 (1952)

    Google Scholar 

  11. Ibarra, O.H.: Some Recent Results Concerning Deterministic P Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 49–54. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  13. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  14. Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Priami, C., Regev, A., Silverman, W., Shapiro, E.: Application of a stochastic passing-name calculus to representation and simulation of molecular processes. Information Processing Letter 80, 25–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An Abstraction for Biological Compartments. Theoretical Computer Science 325(1), 141–167 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shepherdson, J.C., Sturgis, J.E.: Computability of recursive functions. Journal of the ACM 10, 217–255 (1963)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Busi, N., Gorrieri, R. (2006). On the Computational Power of Brane Calculi. In: Priami, C., Plotkin, G. (eds) Transactions on Computational Systems Biology VI. Lecture Notes in Computer Science(), vol 4220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11880646_2

Download citation

  • DOI: https://doi.org/10.1007/11880646_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45779-4

  • Online ISBN: 978-3-540-46236-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics