Skip to main content

Phase Coding on the Large-Scaled Neuronal Population Subjected to Stimulation

  • Conference paper
Advances in Natural Computation (ICNC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4221))

Included in the following conference series:

Abstract

A stochastic nonlinear model of neuronal activity in a neuronal population is proposed in this paper, where the combined dynamics of phase and amplitude is taken into account. An average number density is introduced to describe collective behavior of neuronal population, and a firing density of neurons in the neuronal population is referred to be neural coding. The numerical simulations show that with a weaker stimulation, the response of the neuronal population to stimulation grows up gradually, the coupling configuration among neurons dominates the evolution of the average number density, and new neural coding emerges. Whereas, with a stronger stimulation, the neuronal population responds to the stimulation rapidly, the stimulation dominates the evolution of the average number density, and changes the coupling configuration in the neuronal population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gray, C.M., Konig, P., Engle, A.K., Singer, W.: Oscillatory Responses in Cat Visual Cortex Exhibit Intercolumnar Synchronization Which Reflects Global Stimulus Properties. Nature 338, 334–337 (1989)

    Article  Google Scholar 

  2. Eckhorn, R., Bauer, R., Jordon, W., Brosch, M., Kruse, W., Munk, M., Reitboeck, H.J.: Coherent Oscillations: A Mechanism of Feature Linking in the Visual Cortex? Multiple Electrode and Correlation Analyses in the Cat. Biol. Cybern. 60, 121 (1988)

    Article  Google Scholar 

  3. Winfree, A.T.: The Geometry of Biological Time. Springer, New York (1980)

    MATH  Google Scholar 

  4. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)

    MATH  Google Scholar 

  5. Strogatz, S.H., Marcus, C.M., Westervelt, R.M., Mirollo, R.E.: Simple Model of Collective Transport with Phase Slippage. Phys. Rev. Lett. 61, 2380–2383 (1988)

    Article  Google Scholar 

  6. Tass, P.A.: Phase resetting in Medicine and Biology. Springer, Berlin (1999)

    MATH  Google Scholar 

  7. Colicos, M.A., Collins, B.E., Sailor, M.J., Goda, Y.: Remodeling of Synaptic Actin Induced by Photoconductive Stimulation. Cell 107, 605–616 (2001)

    Article  Google Scholar 

  8. Gazzaniga, M.S., Lvry, R.B., Mangum, G.R.: Cognitive Neuroscience. The Biology of the Mind, 2nd edn. W.W. Norton & Company, New York, London (2002)

    Google Scholar 

  9. Han, T.Z., Wu, F.M.: Neurobiology of Learning and Memory. Beijing Medical University Publisher, Beijing (1998)

    Google Scholar 

  10. Wang, R., Yu, W.: A Stochastic Nonlinear Evolution Model and Dynamic Neural Coding on Spontaneous Behavior of Large-Scale Neuronal Population. Advances in Natural Computation Part 1, 490–497 (2005)

    Article  Google Scholar 

  11. Wang, R., Zhang, Z.: Nonlinear Stochastic Models of Neurons Activities. Neurocomputing 51C, 401–411 (2003)

    Article  Google Scholar 

  12. Wang, R., Hayashi, H., Zhang, Z.: A Stochastic Nonlinear Evolution Model of Neuronal Activity with Random Amplitude. In: Proceedings of 9th International Conference on Neural information Processing, vol. 5, pp. 2497–2502 (2002)

    Google Scholar 

  13. Wang, R., Chen, H.: A Dynamic Evolution Model for the Set of Populations of Neurons. Int. J. Nonlinear Sci. Numer..Simul. 4, 203–208 (2003)

    Google Scholar 

  14. Jiao, X., Wang, R.: Nonlinear Dynamic Model and Neural Coding of Neuronal Network with the Variable Coupling Strength in the Presence of External Stimuli. Applied Physics Letters 87, 083901-3 (2005)

    Google Scholar 

  15. Wang, R., Jiao, X.: Stochastic Model and Neural Coding of Large-Scale Neuronal Population with Variable Coupling Strength. Neurocomputing 69, 778–785 (2006)

    Article  Google Scholar 

  16. Wang, R., Jiao, X., Yu, W.: Some Advance in Nonlinear Stochastic Evolution Models for Phase Resetting Dynamics on Populations of Neuronal Oscillators. Int. J. Nonlinear Sci. Numer.Simul. 4, 435–446 (2003)

    Google Scholar 

  17. Wang, R., Hayashi, H.: An Exploration of Dynamics of the Moving Mechanism of the Growth Cone. Molecules 8, 127–138 (2003)

    Article  Google Scholar 

  18. Jiao, X., Wang, R.: Nonlinear Stochastic Evolution Model of Variable Coupled Neuronal Oscillator Population in the Presence of External Stimuli. Control and Decision 20, 897–900 (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, R., Jiao, X., Peng, J. (2006). Phase Coding on the Large-Scaled Neuronal Population Subjected to Stimulation. In: Jiao, L., Wang, L., Gao, Xb., Liu, J., Wu, F. (eds) Advances in Natural Computation. ICNC 2006. Lecture Notes in Computer Science, vol 4221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881070_34

Download citation

  • DOI: https://doi.org/10.1007/11881070_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45901-9

  • Online ISBN: 978-3-540-45902-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics