Abstract
Aimed at problems of low orientation precision of traditional gray correlation matching and bad real-time feature based on partial hausdorff distance matching, a edge feature matching algorithm based on evolutionary strategies and least trimmed square hausdorff distance is presented. Experiments show that it has good matching effect.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zi-xing, C., Guang-you, X.: Artificial Intelligence And Its Application [M]. TsingHua University Publishing Com., Beijing (2004)
Huttenlocher Daniel, P., Klanderman Gregory, A., Ruck lidge William, J.: Comparing images using the hausdorff distance [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(9), 850–863 (1993)
Sim, D.G., Kwon, O.K., Park, R.H.: Object matching algorithms using robust Hausdorff distance measures [J]. IEEE Transactions on Image Processing 8(3), 425–429 (1999)
Sim, D.G., Kwon, O.K., Park, R.H.: Object matching algorithm using robust Hausdorff distance measures[J]. IEEE Trans. Image Process 8(2), 425–429 (1999); Wong, R.Y., Hall, E.L. Scene Matching with Invariant Moments, CGIP (8), 16–24 (1978)
Sardana, H.K., Daemi, M.F., lbrahim, M.K.: Global Description of Edge Patterns using Moments. Pattern Recognition 27(1) (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
JunShan, L., XianFeng, H., Long, L., Kun, L., JianJun, L. (2006). A Edge Feature Matching Algorithm Based on Evolutionary Strategies and Least Trimmed Square Hausdorff Distance. In: Jiao, L., Wang, L., Gao, Xb., Liu, J., Wu, F. (eds) Advances in Natural Computation. ICNC 2006. Lecture Notes in Computer Science, vol 4221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881070_65
Download citation
DOI: https://doi.org/10.1007/11881070_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45901-9
Online ISBN: 978-3-540-45902-6
eBook Packages: Computer ScienceComputer Science (R0)