Skip to main content

Robust Clustering Algorithms Based on Finite Mixtures of Multivariate t Distribution

  • Conference paper
Advances in Natural Computation (ICNC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4221))

Included in the following conference series:

Abstract

Providing protection against outlier in clustering data is a difficult problem. We proposed two robust clustering algorithms which integrate two modified versions of EM algorithm for mixtures t model with a model selection criterion respectively. The proposed methods can select the number of clusters component automatically by a combined component annihilation strategy and can also avoid the drawbacks of traditional mixture-based clustering algorithms – highly dependent on initialization and may converge to the boundary of the parameter space [7]. Experiment results show the contrast among different algorithms and demonstrate the effectiveness of our algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A.K., Dubes, R.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  2. McLachlan, G., Peel, D.: Finite Mixture Models. John Wiley & Sons, New York (2000)

    Book  MATH  Google Scholar 

  3. McLachlan, G., Peel, D.: Robust Cluster Analysis via Mixtures of Multivariate t Distribution. In: Amin, A., Pudil, P., Dori, D. (eds.) SPR 1998 and SSPR 1998. LNCS, vol. 1451, pp. 658–666. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Peel, D., McLachlan, G.: J. Robust Mixture Modeling using the t Distribution, Statistics and Computing 10, 339–348 (2000)

    Google Scholar 

  5. Celeux, G., Chretien, S., Forbes, F., Mkhadri, A.: A Component Wise EM Algorithm for Mixtures. J. of Computational and Graphical Statistics 16(10), 697–712 (2001)

    Article  MathSciNet  Google Scholar 

  6. Liu, C., Rubin, D.B.: ML Estimation of the t Distribution using EM and its Extensions. ECM and ECME, Statistica Sinica (5), 19–39 (1995)

    Google Scholar 

  7. Figueiredo, M.A.T., Jain, A.K.: Unsupervised Learning of Finite Mixture Models. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(3), 381–396 (2002)

    Article  Google Scholar 

  8. Bernardo, J., Smith, A.: Bayesian Theory. J. Wiley & Sons, Chichester (1994)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, C., Zhang, Q., Guo, L. (2006). Robust Clustering Algorithms Based on Finite Mixtures of Multivariate t Distribution. In: Jiao, L., Wang, L., Gao, Xb., Liu, J., Wu, F. (eds) Advances in Natural Computation. ICNC 2006. Lecture Notes in Computer Science, vol 4221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881070_83

Download citation

  • DOI: https://doi.org/10.1007/11881070_83

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45901-9

  • Online ISBN: 978-3-540-45902-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics