Abstract
An image can be decomposed into different elementary descriptors depending on the observer interest. Similar techniques as used to understand words, regarded as molecules, formed by combining atoms, are proposed to describe images based on their information content. In this paper, we use primitive feature extraction and clustering to code the image information content. Our purpose is to describe the complexity of the information based on the combinational profile of the clustered primitive features using entropic measures like mutual information and Kullback-Leibler divergence. The developed method is demonstrated to asses image complexity for further applications to improve Earth Observation image analysis for sustainable humanitarian crisis response in risk reduction.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Iancu, C., Gavat, I., Datcu, M.: Image disorder Characterization based on rate distortion. In: MarÃn, R., OnaindÃa, E., BugarÃn, A., Santos, J. (eds.) CAEPIA 2005. LNCS (LNAI), vol. 4177, pp. 261–268. Springer, Heidelberg (2006)
Daschiel, H., Datcu, M.: Image information mining - Exploration of Earth Observation archives. Geographica Helvetica 58, 154–168 (2003)
Datcu, M., Daschiel, H., Pelizzari, A., Quartulli, M., Galoppo, A., Colapicchioni, A., Pastori, M., Seidel, K., Marchetti, P.G., D’Elia, S.: Information mining in remote sensing image archives -Part A: System Concepts. IEEE Trans on Geosciences and Remote Sensing, 2923–2936 (2003)
Datcu, M., Stoichescu, D.A., Seidel, K., Iorga, C.: Model fitting and model evidence for multiscale image texture analysis. In: American Institute of Physics, AIP Conference Proceedings, vol. 735, pp. 35–42 (2004)
Schrder, M., Walessa, M., Rehrauer, H., Seidel, K., Datcu, M.: Gibbs random field models: a toolbox for spatial information extraction. Computers and Geosciences 26, 423–432 (2000); Mutual Information Based Measure for Image Content Characterization 349
Datcu, M., Seidel, K., D’Elia, S., Marchetti, P.G.: Knowledge-driven Information Mining in Remote-Sensing Image Archives. ESA Bulletin 110, 26–33 (2002)
Schröder, M., Rehrauer, H., Seidel, K., Datcu, M.: Interactive learning and probabilistic retrieval in remote sensing image archives. IEEE Trans. on Geosciences and Remote Sensing 38(5), 2288–2298 (2000)
Gonzalez, R., Woods, R.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (2002)
Jain, R.: Unified access to universal knowledge: Next generation search experience. Ramesh Jain-White papers (2004)
Rao, A., Srihari, R.K., Zhu, L., Zhang, A.: A method for measuring the complexity of image databases. IEEE Trans. on Multimedia 40(2), 160–173 (2002)
Schröder, M., Rehrauer, H., Seidel, K., Datcu, M.: Spatial information retrieval from remote sensing images: Part II Gibbs Markov Random Field. IEEE Trans. on Geosciences and Remote Sensing 36, 1446–1455 (1998)
Shannon, L.E.: A mathematical theory of communication. Bell Systems Technical Journal, 27 (1948)
Shiryayev, A.M.: Selected works of A. Academic Publishers, New York (1993)
Smeulders, A., Worring, M., Gupta, S.S., Jain, A.: Content based image retrieval at the end of early years. IEEE Trans Pattern Anal Machine Intell 22(12) (2000)
Spataru, A.: Fondements de la thorie de la transmission de l’information. Lausanne: Presses Polytechniques Romandes (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Faur, D., Gavat, I., Datcu, M. (2006). Mutual Information Based Measure for Image Content Characterization. In: MarÃn, R., OnaindÃa, E., BugarÃn, A., Santos, J. (eds) Current Topics in Artificial Intelligence. CAEPIA 2005. Lecture Notes in Computer Science(), vol 4177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881216_36
Download citation
DOI: https://doi.org/10.1007/11881216_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45914-9
Online ISBN: 978-3-540-45915-6
eBook Packages: Computer ScienceComputer Science (R0)