Skip to main content

A Scheduling Order-Based Method to Solve Timetabling Problems

  • Conference paper
Current Topics in Artificial Intelligence (CAEPIA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4177))

Included in the following conference series:

  • 870 Accesses

Abstract

We propose an efficient method that obtains train timetables. It solves conflicts among trains by assigning priorities for each track section of their journey. The heuristic used to determine the priority for each train, takes into account the objective function of the problem. With this method, we try to explore different regions of the same search space as soon as possible so that the final user obtains a feasible solution in a reasonable computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cordeau, J., Toth, P., Vigo, D.: A survey of optimization models for train routing and scheduling. Transportation Science 32, 380–446 (1998)

    Article  MATH  Google Scholar 

  2. Lova, A., Tormos, P., Barber, F., Ingolotti, L., Salido, M.A., Abril, M.: Intelligent Train Scheduling on a High-Loaded Railway Network. In: ATMOS 2004: Algorithmic Methods and Models for Optimization of Railways. LNCS, Springer Verlag, Heidelberg (2005) (to appear)

    Google Scholar 

  3. Nachtigall, K., Voget, S.: Minimizing waiting times in integrated fixed interval timetables by upgrading railway tracks 103, 610–627 (1997)

    Google Scholar 

  4. Schrijver, A., Steenbeek, A.: Timetable construction for railned. Technical Report, CWI, Amsterdam, The Netherlands (in Dutch) (1994)

    Google Scholar 

  5. Schirmer, A., Riesenberg, S.: Parameterized heuristics for project scheduling-Biased random sampling methods. Technical Report 456. Institute fr Betriebswirtschaftslehre der UNIVERSITT KIEL (1997)

    Google Scholar 

  6. Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematics 2(4), 550–581 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. de Oliveira, S.E.: Solving Single-Track Railway Scheduling Problem Using Constraint Programming. Phd Thesis. Univ. of Leeds, School of Computing (2001)

    Google Scholar 

  8. Tormos, P., Lova, A.: A Competitive Heuristic Solution Technique For Resource-Constrained Project Scheduling. Annals Of Operations Research 102, 65–81 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Walker, C., Snowdon, J., Ryan, D.: Simultaneous disruption recovery of a train timetable and crew roster in real time. Comput. Oper. Res. 32(8), 2077–2094 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ingolotti, L., Barber, F., Tormos, P., Lova, A., Salido, M.A., Abril, M. (2006). A Scheduling Order-Based Method to Solve Timetabling Problems. In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds) Current Topics in Artificial Intelligence. CAEPIA 2005. Lecture Notes in Computer Science(), vol 4177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881216_6

Download citation

  • DOI: https://doi.org/10.1007/11881216_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45914-9

  • Online ISBN: 978-3-540-45915-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics