Skip to main content

A Topological-Based Method for Allocating Sensors by Using CSP Techniques

  • Conference paper
Current Topics in Artificial Intelligence (CAEPIA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4177))

Included in the following conference series:

  • 848 Accesses

Abstract

Model-based diagnosis enables isolation of faults of a system. The diagnosis process uses a set of sensors (observations) and a model of the system in order to explain a wrong behaviour. In this work, a new approach is proposed with the aim of improving the computational complexity for isolating faults in a system. The key idea is the addition of a set of new sensors which allows the improvement of the diagnosability of the system. The methodology is based on constraint programming and a greedy method for improving the computational complexity of the CSP resolution. Our approach maintains the requirements of the user (detectability, diagnosability,...).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 3(1), 57–96 (1987)

    Article  MathSciNet  Google Scholar 

  2. de Kleer, J., Mackworth, A., Reiter, R.: Characterizing diagnoses and systems. Artificial Intelligence 2-3(56), 197–222 (1992)

    Google Scholar 

  3. Dressler, O., Struss, P.: A toolbox integrating model-based diagnosability analysis and automated generation of diagnostics. In: DX03, 14th International Workshop on Principles of Diagnosis, Washington, D.C., USA, pp. 99–104 (2003)

    Google Scholar 

  4. Travé-Massuyés, L., Escobet, T., Spanache, S.: Diagnosability analysis based on component supported analytical redundancy relations. In: 5th IFAC Symposium on Fault Detection, EEUU (2003)

    Google Scholar 

  5. Console, L., Picardi, C., Ribaudo, M.: Diagnosis and diagnosability analysis using PEPA. In: ECAI 2000, Proceedings of the 14th European Conference on Artificial Intelligence, Berlin, Germany, pp. 20–25. IOS Press, Amsterdam (2000)

    Google Scholar 

  6. Ceballos, R., Gómez-López, M.T., Gasca, R., Pozo, S.: Determination of Possible Minimal Conflict Sets using Components Clusters and Grobner Bases. In: DX04, 15th International Workshop on Principles of Diagnosis, Carcassonne, France, pp. 21–26 (2004)

    Google Scholar 

  7. Hansen, M.C., Yalcin, H., Hayes, J.P.: Unveiling the ISCAS-85 Benchmarks: A Case Study in Reverse Engineering. IEEE Design and Test of Computers 16(3), 72–80 (1999)

    Article  Google Scholar 

  8. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Fourteenth IJCAI, Montreal, Canada, IOS Press, Amsterdam (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ceballos, R., Cejudo, V., Gasca, R.M., Del Valle, C. (2006). A Topological-Based Method for Allocating Sensors by Using CSP Techniques. In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds) Current Topics in Artificial Intelligence. CAEPIA 2005. Lecture Notes in Computer Science(), vol 4177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881216_7

Download citation

  • DOI: https://doi.org/10.1007/11881216_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45914-9

  • Online ISBN: 978-3-540-45915-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics