Abstract
Design IIR digital filters with arbitrary specified frequency is a multi-parameter optimization problem. In this paper, we employ our proposed method, Quantum-behaved Particle Swarm Optimization (QPSO), to solve the IIR digital filters design problem. QPSO, which is inspired by the fundamental theory of Particle Swarm Optimization and quantum mechanics, is a global convergent stochastic searching technique. The merits of the proposed method such as global convergent, robustness and rapid convergence are demonstrated by the experiment results on the low-pass and band-pass IIR filters.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Peiqing, C.: Digital Signal Processing, 2nd edn. Tsinghua University Press, Beijing (2001)
Guangshu, H.: Digital Signal Processing: Theory, Algorithm and Realization, 2nd edn. Tsinghua University Press, Beijing (2003)
Jianhua, L., Fuliang, Y.: Genetic Optimization Algorithm for Designing IIR Digital Filters. Journal of China Institute of Communications 17, 1–7 (1996)
Zhirong, H., Zhensu, L.: Particle Swarm Optimization for IIR Digital Filters Design. Journal of Circus and Systems 8, 16–20 (2003)
Gexiang, Z., Weidong, J., Laizhao, H.: An effective Optimization Method for Designing IIR Digital Filters. Signal Processing 20, 152–156 (2004)
Sun, J., et al.: Particle Swarm Optimization with Particles Having Quantum Behavior. In: Proceedings of Congress on Evolutionary Computation, pp. 325–331 (2004)
Sun, J., et al.: A Global Search Strategy of Quantum-behaved Particle Swarm Optimization. In: Proceedings of IEEE Conference on Cybernetics and Intelligent Systems, pp. 111–116 (2004)
Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE Conference On Neural Network, pp. 1942–1948 (1995)
Shi, Y., Eberhart, R.: A Modified Swarm Optimizer. In: Proceedings of IEEE Conference on Evolutionary Computation, pp. 69–73 (1998)
Sun, J., Xu, W., Liu, J.: Parameter selection of Quantum-behaved Particle Swarm Optimization. In: Proceedings of International Conference of Natural Computing, pp. 543–552 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fang, W., Sun, J., Xu, W. (2006). Design IIR Digital Filters Using Quantum-Behaved Particle Swarm Optimization. In: Jiao, L., Wang, L., Gao, X., Liu, J., Wu, F. (eds) Advances in Natural Computation. ICNC 2006. Lecture Notes in Computer Science, vol 4222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881223_78
Download citation
DOI: https://doi.org/10.1007/11881223_78
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45907-1
Online ISBN: 978-3-540-45909-5
eBook Packages: Computer ScienceComputer Science (R0)