Skip to main content

Design IIR Digital Filters Using Quantum-Behaved Particle Swarm Optimization

  • Conference paper
Advances in Natural Computation (ICNC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4222))

Included in the following conference series:

Abstract

Design IIR digital filters with arbitrary specified frequency is a multi-parameter optimization problem. In this paper, we employ our proposed method, Quantum-behaved Particle Swarm Optimization (QPSO), to solve the IIR digital filters design problem. QPSO, which is inspired by the fundamental theory of Particle Swarm Optimization and quantum mechanics, is a global convergent stochastic searching technique. The merits of the proposed method such as global convergent, robustness and rapid convergence are demonstrated by the experiment results on the low-pass and band-pass IIR filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Peiqing, C.: Digital Signal Processing, 2nd edn. Tsinghua University Press, Beijing (2001)

    Google Scholar 

  2. Guangshu, H.: Digital Signal Processing: Theory, Algorithm and Realization, 2nd edn. Tsinghua University Press, Beijing (2003)

    Google Scholar 

  3. Jianhua, L., Fuliang, Y.: Genetic Optimization Algorithm for Designing IIR Digital Filters. Journal of China Institute of Communications 17, 1–7 (1996)

    Google Scholar 

  4. Zhirong, H., Zhensu, L.: Particle Swarm Optimization for IIR Digital Filters Design. Journal of Circus and Systems 8, 16–20 (2003)

    Google Scholar 

  5. Gexiang, Z., Weidong, J., Laizhao, H.: An effective Optimization Method for Designing IIR Digital Filters. Signal Processing 20, 152–156 (2004)

    Google Scholar 

  6. Sun, J., et al.: Particle Swarm Optimization with Particles Having Quantum Behavior. In: Proceedings of Congress on Evolutionary Computation, pp. 325–331 (2004)

    Google Scholar 

  7. Sun, J., et al.: A Global Search Strategy of Quantum-behaved Particle Swarm Optimization. In: Proceedings of IEEE Conference on Cybernetics and Intelligent Systems, pp. 111–116 (2004)

    Google Scholar 

  8. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE Conference On Neural Network, pp. 1942–1948 (1995)

    Google Scholar 

  9. Shi, Y., Eberhart, R.: A Modified Swarm Optimizer. In: Proceedings of IEEE Conference on Evolutionary Computation, pp. 69–73 (1998)

    Google Scholar 

  10. Sun, J., Xu, W., Liu, J.: Parameter selection of Quantum-behaved Particle Swarm Optimization. In: Proceedings of International Conference of Natural Computing, pp. 543–552 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fang, W., Sun, J., Xu, W. (2006). Design IIR Digital Filters Using Quantum-Behaved Particle Swarm Optimization. In: Jiao, L., Wang, L., Gao, X., Liu, J., Wu, F. (eds) Advances in Natural Computation. ICNC 2006. Lecture Notes in Computer Science, vol 4222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881223_78

Download citation

  • DOI: https://doi.org/10.1007/11881223_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45907-1

  • Online ISBN: 978-3-540-45909-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics